Upload folder using huggingface_hub
Browse files- .gitignore +2 -3
- app.py +453 -364
- pyproject.toml +7 -6
- requirements.txt +60 -5
- uv.lock +0 -0
.gitignore
CHANGED
@@ -167,7 +167,6 @@ cython_debug/
|
|
167 |
flagged
|
168 |
*.csv
|
169 |
|
170 |
-
|
171 |
-
uv.lock
|
172 |
*.apkg
|
173 |
-
*.csv
|
|
|
|
167 |
flagged
|
168 |
*.csv
|
169 |
|
|
|
|
|
170 |
*.apkg
|
171 |
+
*.csv
|
172 |
+
.history
|
app.py
CHANGED
@@ -7,7 +7,12 @@ import logging
|
|
7 |
from logging.handlers import RotatingFileHandler
|
8 |
import sys
|
9 |
from functools import lru_cache
|
10 |
-
from tenacity import
|
|
|
|
|
|
|
|
|
|
|
11 |
import hashlib
|
12 |
import genanki
|
13 |
import random
|
@@ -45,6 +50,7 @@ class Card(BaseModel):
|
|
45 |
front: CardFront
|
46 |
back: CardBack
|
47 |
metadata: Optional[dict] = None
|
|
|
48 |
|
49 |
|
50 |
class CardList(BaseModel):
|
@@ -77,22 +83,20 @@ class LearningSequence(BaseModel):
|
|
77 |
|
78 |
def setup_logging():
|
79 |
"""Configure logging to both file and console"""
|
80 |
-
logger = logging.getLogger(
|
81 |
logger.setLevel(logging.DEBUG)
|
82 |
|
83 |
# Create formatters
|
84 |
detailed_formatter = logging.Formatter(
|
85 |
-
|
86 |
-
)
|
87 |
-
simple_formatter = logging.Formatter(
|
88 |
-
'%(levelname)s: %(message)s'
|
89 |
)
|
|
|
90 |
|
91 |
# File handler (detailed logging)
|
92 |
file_handler = RotatingFileHandler(
|
93 |
-
|
94 |
-
maxBytes=1024*1024, # 1MB
|
95 |
-
backupCount=5
|
96 |
)
|
97 |
file_handler.setLevel(logging.DEBUG)
|
98 |
file_handler.setFormatter(detailed_formatter)
|
@@ -116,15 +120,18 @@ logger = setup_logging()
|
|
116 |
# Replace the caching implementation with a proper cache dictionary
|
117 |
_response_cache = {} # Global cache dictionary
|
118 |
|
|
|
119 |
@lru_cache(maxsize=100)
|
120 |
def get_cached_response(cache_key: str):
|
121 |
"""Get response from cache"""
|
122 |
return _response_cache.get(cache_key)
|
123 |
|
|
|
124 |
def set_cached_response(cache_key: str, response):
|
125 |
"""Set response in cache"""
|
126 |
_response_cache[cache_key] = response
|
127 |
|
|
|
128 |
def create_cache_key(prompt: str, model: str) -> str:
|
129 |
"""Create a unique cache key for the API request"""
|
130 |
return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
|
@@ -137,7 +144,7 @@ def create_cache_key(prompt: str, model: str) -> str:
|
|
137 |
retry=retry_if_exception_type(Exception),
|
138 |
before_sleep=lambda retry_state: logger.warning(
|
139 |
f"Retrying API call (attempt {retry_state.attempt_number})"
|
140 |
-
)
|
141 |
)
|
142 |
def structured_output_completion(
|
143 |
client, model, response_format, system_prompt, user_prompt
|
@@ -145,17 +152,17 @@ def structured_output_completion(
|
|
145 |
"""Make API call with retry logic and caching"""
|
146 |
cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
|
147 |
cached_response = get_cached_response(cache_key)
|
148 |
-
|
149 |
if cached_response is not None:
|
150 |
logger.info("Using cached response")
|
151 |
return cached_response
|
152 |
|
153 |
try:
|
154 |
logger.debug(f"Making API call with model {model}")
|
155 |
-
|
156 |
# Add JSON instruction to system prompt
|
157 |
system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
|
158 |
-
|
159 |
completion = client.chat.completions.create(
|
160 |
model=model,
|
161 |
messages=[
|
@@ -163,7 +170,7 @@ def structured_output_completion(
|
|
163 |
{"role": "user", "content": user_prompt.strip()},
|
164 |
],
|
165 |
response_format={"type": "json_object"},
|
166 |
-
temperature=0.7
|
167 |
)
|
168 |
|
169 |
if not hasattr(completion, "choices") or not completion.choices:
|
@@ -177,7 +184,7 @@ def structured_output_completion(
|
|
177 |
|
178 |
# Parse the JSON response
|
179 |
result = json.loads(first_choice.message.content)
|
180 |
-
|
181 |
# Cache the successful response
|
182 |
set_cached_response(cache_key, result)
|
183 |
return result
|
@@ -188,25 +195,33 @@ def structured_output_completion(
|
|
188 |
|
189 |
|
190 |
def generate_cards_batch(
|
191 |
-
client,
|
192 |
-
model,
|
193 |
-
topic,
|
194 |
-
num_cards,
|
195 |
-
system_prompt,
|
196 |
-
batch_size=3
|
197 |
):
|
198 |
-
"""Generate a batch of cards for a topic"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
cards_prompt = f"""
|
200 |
Generate {num_cards} flashcards for the topic: {topic}
|
|
|
201 |
Return your response as a JSON object with the following structure:
|
202 |
{{
|
203 |
"cards": [
|
204 |
{{
|
|
|
205 |
"front": {{
|
206 |
-
"question": "question text"
|
207 |
}},
|
208 |
"back": {{
|
209 |
-
"answer": "concise answer",
|
210 |
"explanation": "detailed explanation",
|
211 |
"example": "practical example"
|
212 |
}},
|
@@ -217,18 +232,17 @@ def generate_cards_batch(
|
|
217 |
"difficulty": "beginner/intermediate/advanced"
|
218 |
}}
|
219 |
}}
|
|
|
220 |
]
|
221 |
}}
|
222 |
"""
|
223 |
|
224 |
try:
|
225 |
-
logger.info(
|
|
|
|
|
226 |
response = structured_output_completion(
|
227 |
-
client,
|
228 |
-
model,
|
229 |
-
{"type": "json_object"},
|
230 |
-
system_prompt,
|
231 |
-
cards_prompt
|
232 |
)
|
233 |
|
234 |
if not response or "cards" not in response:
|
@@ -238,62 +252,83 @@ def generate_cards_batch(
|
|
238 |
# Convert the JSON response into Card objects
|
239 |
cards = []
|
240 |
for card_data in response["cards"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
card = Card(
|
|
|
242 |
front=CardFront(**card_data["front"]),
|
243 |
back=CardBack(**card_data["back"]),
|
244 |
-
metadata=card_data.get("metadata", {})
|
245 |
)
|
246 |
cards.append(card)
|
247 |
|
248 |
return cards
|
249 |
|
250 |
except Exception as e:
|
251 |
-
logger.error(
|
|
|
|
|
252 |
raise
|
253 |
|
254 |
|
255 |
# Add near the top with other constants
|
256 |
AVAILABLE_MODELS = [
|
257 |
{
|
258 |
-
"value": "gpt-
|
259 |
-
"label": "gpt-
|
260 |
-
"description": "Balanced speed and quality"
|
261 |
},
|
262 |
{
|
263 |
-
"value": "gpt-
|
264 |
-
"label": "gpt-
|
265 |
-
"description": "Higher quality, slower generation"
|
266 |
},
|
267 |
-
{
|
268 |
-
"value": "o1",
|
269 |
-
"label": "o1 (Best Quality)",
|
270 |
-
"description": "Highest quality, longest generation time"
|
271 |
-
}
|
272 |
]
|
273 |
|
274 |
GENERATION_MODES = [
|
275 |
{
|
276 |
"value": "subject",
|
277 |
"label": "Single Subject",
|
278 |
-
"description": "Generate cards for a specific topic"
|
279 |
},
|
280 |
{
|
281 |
"value": "path",
|
282 |
"label": "Learning Path",
|
283 |
-
"description": "Break down a job description or learning goal into subjects"
|
284 |
-
}
|
285 |
]
|
286 |
|
|
|
287 |
def generate_cards(
|
288 |
api_key_input,
|
289 |
subject,
|
290 |
-
model_name="gpt-
|
291 |
topic_number=1,
|
292 |
cards_per_topic=2,
|
293 |
preference_prompt="assume I'm a beginner",
|
|
|
294 |
):
|
295 |
logger.info(f"Starting card generation for subject: {subject}")
|
296 |
-
logger.debug(
|
|
|
|
|
297 |
|
298 |
# Input validation
|
299 |
if not api_key_input:
|
@@ -305,9 +340,9 @@ def generate_cards(
|
|
305 |
if not subject.strip():
|
306 |
logger.warning("No subject provided")
|
307 |
raise gr.Error("Subject is required")
|
308 |
-
|
309 |
gr.Info("🚀 Starting card generation...")
|
310 |
-
|
311 |
try:
|
312 |
logger.debug("Initializing OpenAI client")
|
313 |
client = OpenAI(api_key=api_key_input)
|
@@ -318,9 +353,9 @@ def generate_cards(
|
|
318 |
model = model_name
|
319 |
flattened_data = []
|
320 |
total = 0
|
321 |
-
|
322 |
progress_tracker = gr.Progress(track_tqdm=True)
|
323 |
-
|
324 |
system_prompt = f"""
|
325 |
You are an expert educator in {subject}, creating an optimized learning sequence.
|
326 |
Your goal is to:
|
@@ -357,30 +392,21 @@ def generate_cards(
|
|
357 |
try:
|
358 |
logger.info("Generating topics...")
|
359 |
topics_response = structured_output_completion(
|
360 |
-
client,
|
361 |
-
model,
|
362 |
-
{"type": "json_object"},
|
363 |
-
system_prompt,
|
364 |
-
topic_prompt
|
365 |
)
|
366 |
-
|
367 |
if not topics_response or "topics" not in topics_response:
|
368 |
logger.error("Invalid topics response format")
|
369 |
raise gr.Error("Failed to generate topics. Please try again.")
|
370 |
|
371 |
topics = topics_response["topics"]
|
372 |
-
|
373 |
gr.Info(f"✨ Generated {len(topics)} topics successfully!")
|
374 |
-
|
375 |
# Generate cards for each topic
|
376 |
-
for i, topic in enumerate(
|
377 |
-
|
378 |
-
|
379 |
-
<p>Generating cards for topic {i+1}/{len(topics)}: {topic["name"]}</p>
|
380 |
-
<p>Cards generated so far: {total}</p>
|
381 |
-
</div>
|
382 |
-
"""
|
383 |
-
|
384 |
try:
|
385 |
cards = generate_cards_batch(
|
386 |
client,
|
@@ -388,17 +414,19 @@ def generate_cards(
|
|
388 |
topic["name"],
|
389 |
cards_per_topic,
|
390 |
system_prompt,
|
391 |
-
|
|
|
392 |
)
|
393 |
-
|
394 |
if cards:
|
395 |
for card_index, card in enumerate(cards, start=1):
|
396 |
-
index = f"{i+1}.{card_index}"
|
397 |
metadata = card.metadata or {}
|
398 |
-
|
399 |
row = [
|
400 |
index,
|
401 |
topic["name"],
|
|
|
402 |
card.front.question,
|
403 |
card.back.answer,
|
404 |
card.back.explanation,
|
@@ -406,15 +434,17 @@ def generate_cards(
|
|
406 |
metadata.get("prerequisites", []),
|
407 |
metadata.get("learning_outcomes", []),
|
408 |
metadata.get("misconceptions", []),
|
409 |
-
metadata.get("difficulty", "beginner")
|
410 |
]
|
411 |
flattened_data.append(row)
|
412 |
total += 1
|
413 |
-
|
414 |
gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
|
415 |
-
|
416 |
except Exception as e:
|
417 |
-
logger.error(
|
|
|
|
|
418 |
gr.Warning(f"Failed to generate cards for '{topic['name']}'")
|
419 |
continue
|
420 |
|
@@ -424,13 +454,14 @@ def generate_cards(
|
|
424 |
<p>Total cards generated: {total}</p>
|
425 |
</div>
|
426 |
"""
|
427 |
-
|
428 |
# Convert to DataFrame with all columns
|
429 |
df = pd.DataFrame(
|
430 |
flattened_data,
|
431 |
columns=[
|
432 |
"Index",
|
433 |
"Topic",
|
|
|
434 |
"Question",
|
435 |
"Answer",
|
436 |
"Explanation",
|
@@ -438,10 +469,10 @@ def generate_cards(
|
|
438 |
"Prerequisites",
|
439 |
"Learning_Outcomes",
|
440 |
"Common_Misconceptions",
|
441 |
-
"Difficulty"
|
442 |
-
]
|
443 |
)
|
444 |
-
|
445 |
return df, final_html, total
|
446 |
|
447 |
except Exception as e:
|
@@ -452,20 +483,21 @@ def generate_cards(
|
|
452 |
# Update the BASIC_MODEL definition with enhanced CSS/HTML
|
453 |
BASIC_MODEL = genanki.Model(
|
454 |
random.randrange(1 << 30, 1 << 31),
|
455 |
-
|
456 |
fields=[
|
457 |
-
{
|
458 |
-
{
|
459 |
-
{
|
460 |
-
{
|
461 |
-
{
|
462 |
-
{
|
463 |
-
{
|
464 |
-
{
|
465 |
],
|
466 |
-
templates=[
|
467 |
-
|
468 |
-
|
|
|
469 |
<div class="card question-side">
|
470 |
<div class="difficulty-indicator {{Difficulty}}"></div>
|
471 |
<div class="content">
|
@@ -482,8 +514,8 @@ BASIC_MODEL = genanki.Model(
|
|
482 |
this.parentElement.classList.toggle('show');
|
483 |
});
|
484 |
</script>
|
485 |
-
|
486 |
-
|
487 |
<div class="card answer-side">
|
488 |
<div class="content">
|
489 |
<div class="question-section">
|
@@ -528,9 +560,10 @@ BASIC_MODEL = genanki.Model(
|
|
528 |
</div>
|
529 |
</div>
|
530 |
</div>
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
534 |
/* Base styles */
|
535 |
.card {
|
536 |
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
@@ -714,15 +747,69 @@ BASIC_MODEL = genanki.Model(
|
|
714 |
.tab-content.active {
|
715 |
animation: fadeIn 0.2s ease-in-out;
|
716 |
}
|
717 |
-
|
718 |
)
|
719 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
# Split the export functions
|
721 |
def export_csv(data):
|
722 |
"""Export the generated cards as a CSV file"""
|
723 |
if data is None:
|
724 |
raise gr.Error("No data to export. Please generate cards first.")
|
725 |
-
|
726 |
if len(data) < 2: # Minimum 2 cards
|
727 |
raise gr.Error("Need at least 2 cards to export.")
|
728 |
|
@@ -732,188 +819,91 @@ def export_csv(data):
|
|
732 |
data.to_csv(csv_path, index=False)
|
733 |
gr.Info("✅ CSV export complete!")
|
734 |
return gr.File(value=csv_path, visible=True)
|
735 |
-
|
736 |
except Exception as e:
|
737 |
logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
|
738 |
raise gr.Error(f"Failed to export CSV: {str(e)}")
|
739 |
|
|
|
740 |
def export_deck(data, subject):
|
741 |
"""Export the generated cards as an Anki deck with pedagogical metadata"""
|
742 |
if data is None:
|
743 |
raise gr.Error("No data to export. Please generate cards first.")
|
744 |
-
|
745 |
if len(data) < 2: # Minimum 2 cards
|
746 |
raise gr.Error("Need at least 2 cards to export.")
|
747 |
|
748 |
try:
|
749 |
gr.Info("💾 Creating Anki deck...")
|
750 |
-
|
751 |
deck_id = random.randrange(1 << 30, 1 << 31)
|
752 |
deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
|
753 |
-
|
754 |
-
records = data.to_dict(
|
755 |
-
|
756 |
-
#
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
'AnkiGen Enhanced',
|
761 |
-
fields=[
|
762 |
-
{'name': 'Question'},
|
763 |
-
{'name': 'Answer'},
|
764 |
-
{'name': 'Explanation'},
|
765 |
-
{'name': 'Example'},
|
766 |
-
{'name': 'Prerequisites'},
|
767 |
-
{'name': 'Learning_Outcomes'},
|
768 |
-
{'name': 'Common_Misconceptions'},
|
769 |
-
{'name': 'Difficulty'}
|
770 |
-
],
|
771 |
-
templates=[{
|
772 |
-
'name': 'Card 1',
|
773 |
-
'qfmt': '''
|
774 |
-
<div class="card question">
|
775 |
-
<div class="content">{{Question}}</div>
|
776 |
-
<div class="prerequisites">Prerequisites: {{Prerequisites}}</div>
|
777 |
-
</div>
|
778 |
-
''',
|
779 |
-
'afmt': '''
|
780 |
-
<div class="card answer">
|
781 |
-
<div class="question">{{Question}}</div>
|
782 |
-
<hr>
|
783 |
-
<div class="content">
|
784 |
-
<div class="answer-section">
|
785 |
-
<h3>Answer:</h3>
|
786 |
-
<div>{{Answer}}</div>
|
787 |
-
</div>
|
788 |
-
|
789 |
-
<div class="explanation-section">
|
790 |
-
<h3>Explanation:</h3>
|
791 |
-
<div>{{Explanation}}</div>
|
792 |
-
</div>
|
793 |
-
|
794 |
-
<div class="example-section">
|
795 |
-
<h3>Example:</h3>
|
796 |
-
<pre><code>{{Example}}</code></pre>
|
797 |
-
</div>
|
798 |
-
|
799 |
-
<div class="metadata-section">
|
800 |
-
<h3>Prerequisites:</h3>
|
801 |
-
<div>{{Prerequisites}}</div>
|
802 |
-
|
803 |
-
<h3>Learning Outcomes:</h3>
|
804 |
-
<div>{{Learning_Outcomes}}</div>
|
805 |
-
|
806 |
-
<h3>Watch out for:</h3>
|
807 |
-
<div>{{Common_Misconceptions}}</div>
|
808 |
-
|
809 |
-
<h3>Difficulty Level:</h3>
|
810 |
-
<div>{{Difficulty}}</div>
|
811 |
-
</div>
|
812 |
-
</div>
|
813 |
-
</div>
|
814 |
-
'''
|
815 |
-
}],
|
816 |
-
css='''
|
817 |
-
.card {
|
818 |
-
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
819 |
-
font-size: 16px;
|
820 |
-
line-height: 1.6;
|
821 |
-
color: #1a1a1a;
|
822 |
-
max-width: 800px;
|
823 |
-
margin: 0 auto;
|
824 |
-
padding: 20px;
|
825 |
-
background: #ffffff;
|
826 |
-
}
|
827 |
-
|
828 |
-
.question {
|
829 |
-
font-size: 1.3em;
|
830 |
-
font-weight: 600;
|
831 |
-
color: #2563eb;
|
832 |
-
margin-bottom: 1.5em;
|
833 |
-
}
|
834 |
-
|
835 |
-
.prerequisites {
|
836 |
-
font-size: 0.9em;
|
837 |
-
color: #666;
|
838 |
-
margin-top: 1em;
|
839 |
-
font-style: italic;
|
840 |
-
}
|
841 |
-
|
842 |
-
.answer-section,
|
843 |
-
.explanation-section,
|
844 |
-
.example-section {
|
845 |
-
margin: 1.5em 0;
|
846 |
-
padding: 1.2em;
|
847 |
-
border-radius: 8px;
|
848 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
849 |
-
}
|
850 |
-
|
851 |
-
.answer-section {
|
852 |
-
background: #f0f9ff;
|
853 |
-
border-left: 4px solid #2563eb;
|
854 |
-
}
|
855 |
-
|
856 |
-
.explanation-section {
|
857 |
-
background: #f0fdf4;
|
858 |
-
border-left: 4px solid #4ade80;
|
859 |
-
}
|
860 |
-
|
861 |
-
.example-section {
|
862 |
-
background: #fff7ed;
|
863 |
-
border-left: 4px solid #f97316;
|
864 |
-
}
|
865 |
-
|
866 |
-
.metadata-section {
|
867 |
-
background: #f8f9fa;
|
868 |
-
padding: 1em;
|
869 |
-
border-radius: 6px;
|
870 |
-
margin: 1em 0;
|
871 |
-
}
|
872 |
-
|
873 |
-
pre code {
|
874 |
-
display: block;
|
875 |
-
padding: 1em;
|
876 |
-
background: #1e293b;
|
877 |
-
color: #e2e8f0;
|
878 |
-
border-radius: 6px;
|
879 |
-
overflow-x: auto;
|
880 |
-
font-family: 'Fira Code', 'Consolas', monospace;
|
881 |
-
font-size: 0.9em;
|
882 |
-
}
|
883 |
-
'''
|
884 |
-
)
|
885 |
-
|
886 |
# Add notes to the deck
|
887 |
for record in records:
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
901 |
deck.add_note(note)
|
902 |
-
|
903 |
# Create a temporary directory for the package
|
904 |
with tempfile.TemporaryDirectory() as temp_dir:
|
905 |
output_path = Path(temp_dir) / "anki_deck.apkg"
|
906 |
package = genanki.Package(deck)
|
907 |
package.write_to_file(output_path)
|
908 |
-
|
909 |
# Copy to a more permanent location
|
910 |
final_path = "anki_deck.apkg"
|
911 |
-
with open(output_path,
|
912 |
dst.write(src.read())
|
913 |
-
|
914 |
gr.Info("✅ Anki deck export complete!")
|
915 |
return gr.File(value=final_path, visible=True)
|
916 |
-
|
917 |
except Exception as e:
|
918 |
logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
|
919 |
raise gr.Error(f"Failed to export Anki deck: {str(e)}")
|
@@ -951,21 +941,22 @@ custom_theme = gr.themes.Soft().set(
|
|
951 |
button_primary_text_color="white",
|
952 |
)
|
953 |
|
|
|
954 |
def analyze_learning_path(api_key, description, model):
|
955 |
"""Analyze a job description or learning goal to create a structured learning path"""
|
956 |
-
|
957 |
try:
|
958 |
client = OpenAI(api_key=api_key)
|
959 |
except Exception as e:
|
960 |
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
|
961 |
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
|
962 |
-
|
963 |
system_prompt = """You are an expert curriculum designer and educational consultant.
|
964 |
Your task is to analyze learning goals and create structured, achievable learning paths.
|
965 |
Break down complex topics into manageable subjects, identify prerequisites,
|
966 |
and suggest practical projects that reinforce learning.
|
967 |
Focus on creating a logical progression that builds upon previous knowledge."""
|
968 |
-
|
969 |
path_prompt = f"""
|
970 |
Analyze this description and create a structured learning path.
|
971 |
Return your analysis as a JSON object with the following structure:
|
@@ -984,38 +975,96 @@ def analyze_learning_path(api_key, description, model):
|
|
984 |
Description to analyze:
|
985 |
{description}
|
986 |
"""
|
987 |
-
|
988 |
try:
|
989 |
response = structured_output_completion(
|
990 |
-
client,
|
991 |
-
model,
|
992 |
-
{"type": "json_object"},
|
993 |
-
system_prompt,
|
994 |
-
path_prompt
|
995 |
)
|
996 |
-
|
997 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
subjects_df = pd.DataFrame(response["subjects"])
|
999 |
-
learning_order_text =
|
|
|
|
|
1000 |
projects_text = f"### Suggested Projects\n{response['projects']}"
|
1001 |
-
|
1002 |
return subjects_df, learning_order_text, projects_text
|
1003 |
-
|
1004 |
except Exception as e:
|
1005 |
logger.error(f"Failed to analyze learning path: {str(e)}")
|
1006 |
raise gr.Error(f"Failed to analyze learning path: {str(e)}")
|
1007 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1008 |
with gr.Blocks(
|
1009 |
theme=custom_theme,
|
1010 |
title="AnkiGen",
|
1011 |
css="""
|
1012 |
#footer {display:none !important}
|
1013 |
-
.tall-dataframe {height:
|
1014 |
-
.contain {max-width:
|
1015 |
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
|
1016 |
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
|
|
|
1017 |
""",
|
1018 |
-
js=js_storage,
|
1019 |
) as ankigen:
|
1020 |
with gr.Column(elem_classes="contain"):
|
1021 |
gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
|
@@ -1026,68 +1075,62 @@ with gr.Blocks(
|
|
1026 |
with gr.Row():
|
1027 |
with gr.Column(scale=1):
|
1028 |
gr.Markdown("### Configuration")
|
1029 |
-
|
1030 |
# Add mode selection
|
1031 |
generation_mode = gr.Radio(
|
1032 |
-
choices=[
|
1033 |
-
"subject",
|
1034 |
-
"path"
|
1035 |
-
],
|
1036 |
value="subject",
|
1037 |
label="Generation Mode",
|
1038 |
-
info="Choose how you want to generate content"
|
1039 |
)
|
1040 |
-
|
1041 |
# Create containers for different modes
|
1042 |
with gr.Group() as subject_mode:
|
1043 |
subject = gr.Textbox(
|
1044 |
label="Subject",
|
1045 |
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
|
1046 |
-
info="The topic you want to generate flashcards for"
|
1047 |
)
|
1048 |
-
|
1049 |
with gr.Group(visible=False) as path_mode:
|
1050 |
description = gr.Textbox(
|
1051 |
label="Learning Goal",
|
1052 |
placeholder="Paste a job description or describe what you want to learn...",
|
1053 |
info="We'll break this down into learnable subjects",
|
1054 |
-
lines=5
|
|
|
|
|
|
|
1055 |
)
|
1056 |
-
|
1057 |
-
|
1058 |
# Common settings
|
1059 |
api_key_input = gr.Textbox(
|
1060 |
label="OpenAI API Key",
|
1061 |
type="password",
|
1062 |
placeholder="Enter your OpenAI API key",
|
1063 |
value=os.getenv("OPENAI_API_KEY", ""),
|
1064 |
-
info="Your OpenAI API key starting with 'sk-'"
|
1065 |
)
|
1066 |
-
|
1067 |
# Generation Button
|
1068 |
generate_button = gr.Button("Generate Cards", variant="primary")
|
1069 |
|
1070 |
# Advanced Settings in Accordion
|
1071 |
with gr.Accordion("Advanced Settings", open=False):
|
1072 |
model_choice = gr.Dropdown(
|
1073 |
-
choices=[
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
],
|
1078 |
-
value="gpt-4o-mini",
|
1079 |
-
label="Model Selection",
|
1080 |
-
info="Select the AI model to use for generation"
|
1081 |
)
|
1082 |
-
|
1083 |
# Add tooltip/description for models
|
1084 |
model_info = gr.Markdown("""
|
1085 |
**Model Information:**
|
1086 |
-
- **gpt-
|
1087 |
-
- **gpt-
|
1088 |
-
- **o1**: Highest quality, longest generation time
|
1089 |
""")
|
1090 |
-
|
1091 |
topic_number = gr.Slider(
|
1092 |
label="Number of Topics",
|
1093 |
minimum=2,
|
@@ -1110,6 +1153,11 @@ with gr.Blocks(
|
|
1110 |
info="Customize how the content is presented",
|
1111 |
lines=3,
|
1112 |
)
|
|
|
|
|
|
|
|
|
|
|
1113 |
|
1114 |
# Right column - add a new container for learning path results
|
1115 |
with gr.Column(scale=2):
|
@@ -1118,32 +1166,33 @@ with gr.Blocks(
|
|
1118 |
subjects_list = gr.Dataframe(
|
1119 |
headers=["Subject", "Prerequisites", "Time Estimate"],
|
1120 |
label="Recommended Subjects",
|
1121 |
-
interactive=False
|
1122 |
)
|
1123 |
learning_order = gr.Markdown("### Recommended Learning Order")
|
1124 |
projects = gr.Markdown("### Suggested Projects")
|
1125 |
-
|
1126 |
# Replace generate_selected with use_subjects
|
1127 |
use_subjects = gr.Button(
|
1128 |
"Use These Subjects ℹ️", # Added info emoji to button text
|
1129 |
-
variant="primary"
|
1130 |
)
|
1131 |
gr.Markdown(
|
1132 |
"*Click to copy subjects to main input for card generation*",
|
1133 |
-
elem_classes="hint-text"
|
1134 |
)
|
1135 |
-
|
1136 |
# Existing output components
|
1137 |
with gr.Group() as cards_output:
|
1138 |
gr.Markdown("### Generated Cards")
|
1139 |
-
|
1140 |
# Output Format Documentation
|
1141 |
-
with gr.Accordion("Output Format", open=
|
1142 |
gr.Markdown("""
|
1143 |
The generated cards include:
|
1144 |
|
1145 |
* **Index**: Unique identifier for each card
|
1146 |
* **Topic**: The specific subtopic within your subject
|
|
|
1147 |
* **Question**: Clear, focused question for the flashcard front
|
1148 |
* **Answer**: Concise core answer
|
1149 |
* **Explanation**: Detailed conceptual explanation
|
@@ -1162,7 +1211,7 @@ with gr.Blocks(
|
|
1162 |
with gr.Accordion("Example Card Format", open=False):
|
1163 |
gr.Code(
|
1164 |
label="Example Card",
|
1165 |
-
value=
|
1166 |
{
|
1167 |
"front": {
|
1168 |
"question": "What is a PRIMARY KEY constraint in SQL?"
|
@@ -1182,15 +1231,17 @@ with gr.Blocks(
|
|
1182 |
"difficulty": "beginner"
|
1183 |
}
|
1184 |
}
|
1185 |
-
|
1186 |
-
language="json"
|
1187 |
)
|
1188 |
-
|
1189 |
# Dataframe Output
|
1190 |
output = gr.Dataframe(
|
|
|
1191 |
headers=[
|
1192 |
"Index",
|
1193 |
"Topic",
|
|
|
1194 |
"Question",
|
1195 |
"Answer",
|
1196 |
"Explanation",
|
@@ -1198,41 +1249,68 @@ with gr.Blocks(
|
|
1198 |
"Prerequisites",
|
1199 |
"Learning_Outcomes",
|
1200 |
"Common_Misconceptions",
|
1201 |
-
"Difficulty"
|
1202 |
],
|
1203 |
interactive=True,
|
1204 |
elem_classes="tall-dataframe",
|
1205 |
wrap=True,
|
1206 |
-
column_widths=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1207 |
)
|
1208 |
|
1209 |
# Export Controls
|
1210 |
-
with gr.
|
1211 |
-
|
1212 |
-
|
1213 |
-
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
1217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1218 |
|
1219 |
# Add near the top of the Blocks
|
1220 |
with gr.Row():
|
1221 |
progress = gr.HTML(visible=False)
|
1222 |
-
total_cards = gr.Number(
|
|
|
|
|
1223 |
|
1224 |
# Add JavaScript to handle mode switching
|
1225 |
def update_mode_visibility(mode):
|
1226 |
"""Update component visibility based on selected mode and clear values"""
|
1227 |
-
is_subject =
|
1228 |
-
is_path =
|
1229 |
-
|
1230 |
# Clear values when switching modes
|
1231 |
if is_path:
|
1232 |
subject.value = "" # Clear subject when switching to path mode
|
1233 |
else:
|
1234 |
-
description.value =
|
1235 |
-
|
|
|
|
|
1236 |
return {
|
1237 |
subject_mode: gr.update(visible=is_subject),
|
1238 |
path_mode: gr.update(visible=is_path),
|
@@ -1242,7 +1320,7 @@ with gr.Blocks(
|
|
1242 |
description: gr.update(value="") if not is_path else gr.update(),
|
1243 |
output: gr.update(value=None), # Clear previous output
|
1244 |
progress: gr.update(value="", visible=False),
|
1245 |
-
total_cards: gr.update(value=0, visible=False)
|
1246 |
}
|
1247 |
|
1248 |
# Update the mode switching handler to include all components that need clearing
|
@@ -1258,60 +1336,70 @@ with gr.Blocks(
|
|
1258 |
description,
|
1259 |
output,
|
1260 |
progress,
|
1261 |
-
total_cards
|
1262 |
-
]
|
1263 |
)
|
1264 |
-
|
1265 |
# Add handler for path analysis
|
1266 |
analyze_button.click(
|
1267 |
fn=analyze_learning_path,
|
1268 |
inputs=[api_key_input, description, model_choice],
|
1269 |
-
outputs=[subjects_list, learning_order, projects]
|
1270 |
)
|
1271 |
-
|
1272 |
# Add this function to handle copying subjects to main input
|
1273 |
-
def use_selected_subjects(subjects_df
|
1274 |
"""Copy selected subjects to main input and switch to subject mode"""
|
1275 |
if subjects_df is None or subjects_df.empty:
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1279 |
subjects = subjects_df["Subject"].tolist()
|
1280 |
combined_subject = ", ".join(subjects)
|
1281 |
-
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
1285 |
-
# Return updates for
|
1286 |
return (
|
1287 |
-
"subject",
|
1288 |
-
gr.update(visible=True), #
|
1289 |
-
gr.update(visible=False),
|
1290 |
-
gr.update(visible=False),
|
1291 |
-
gr.update(visible=
|
1292 |
-
|
1293 |
-
|
1294 |
-
|
1295 |
-
|
1296 |
-
|
1297 |
)
|
1298 |
|
1299 |
-
#
|
1300 |
use_subjects.click(
|
1301 |
fn=use_selected_subjects,
|
1302 |
-
inputs=[subjects_list,
|
1303 |
-
outputs=[
|
1304 |
generation_mode,
|
1305 |
-
|
1306 |
-
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
]
|
1315 |
)
|
1316 |
|
1317 |
# Simplified event handlers
|
@@ -1320,13 +1408,14 @@ with gr.Blocks(
|
|
1320 |
inputs=[
|
1321 |
api_key_input,
|
1322 |
subject,
|
1323 |
-
model_choice,
|
1324 |
topic_number,
|
1325 |
cards_per_topic,
|
1326 |
preference_prompt,
|
|
|
1327 |
],
|
1328 |
outputs=[output, progress, total_cards],
|
1329 |
-
show_progress=
|
1330 |
)
|
1331 |
|
1332 |
export_csv_button.click(
|
|
|
7 |
from logging.handlers import RotatingFileHandler
|
8 |
import sys
|
9 |
from functools import lru_cache
|
10 |
+
from tenacity import (
|
11 |
+
retry,
|
12 |
+
stop_after_attempt,
|
13 |
+
wait_exponential,
|
14 |
+
retry_if_exception_type,
|
15 |
+
)
|
16 |
import hashlib
|
17 |
import genanki
|
18 |
import random
|
|
|
50 |
front: CardFront
|
51 |
back: CardBack
|
52 |
metadata: Optional[dict] = None
|
53 |
+
card_type: str = "basic" # Add card_type, default to basic
|
54 |
|
55 |
|
56 |
class CardList(BaseModel):
|
|
|
83 |
|
84 |
def setup_logging():
|
85 |
"""Configure logging to both file and console"""
|
86 |
+
logger = logging.getLogger("ankigen")
|
87 |
logger.setLevel(logging.DEBUG)
|
88 |
|
89 |
# Create formatters
|
90 |
detailed_formatter = logging.Formatter(
|
91 |
+
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
|
|
|
|
|
|
92 |
)
|
93 |
+
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
94 |
|
95 |
# File handler (detailed logging)
|
96 |
file_handler = RotatingFileHandler(
|
97 |
+
"ankigen.log",
|
98 |
+
maxBytes=1024 * 1024, # 1MB
|
99 |
+
backupCount=5,
|
100 |
)
|
101 |
file_handler.setLevel(logging.DEBUG)
|
102 |
file_handler.setFormatter(detailed_formatter)
|
|
|
120 |
# Replace the caching implementation with a proper cache dictionary
|
121 |
_response_cache = {} # Global cache dictionary
|
122 |
|
123 |
+
|
124 |
@lru_cache(maxsize=100)
|
125 |
def get_cached_response(cache_key: str):
|
126 |
"""Get response from cache"""
|
127 |
return _response_cache.get(cache_key)
|
128 |
|
129 |
+
|
130 |
def set_cached_response(cache_key: str, response):
|
131 |
"""Set response in cache"""
|
132 |
_response_cache[cache_key] = response
|
133 |
|
134 |
+
|
135 |
def create_cache_key(prompt: str, model: str) -> str:
|
136 |
"""Create a unique cache key for the API request"""
|
137 |
return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
|
|
|
144 |
retry=retry_if_exception_type(Exception),
|
145 |
before_sleep=lambda retry_state: logger.warning(
|
146 |
f"Retrying API call (attempt {retry_state.attempt_number})"
|
147 |
+
),
|
148 |
)
|
149 |
def structured_output_completion(
|
150 |
client, model, response_format, system_prompt, user_prompt
|
|
|
152 |
"""Make API call with retry logic and caching"""
|
153 |
cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
|
154 |
cached_response = get_cached_response(cache_key)
|
155 |
+
|
156 |
if cached_response is not None:
|
157 |
logger.info("Using cached response")
|
158 |
return cached_response
|
159 |
|
160 |
try:
|
161 |
logger.debug(f"Making API call with model {model}")
|
162 |
+
|
163 |
# Add JSON instruction to system prompt
|
164 |
system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
|
165 |
+
|
166 |
completion = client.chat.completions.create(
|
167 |
model=model,
|
168 |
messages=[
|
|
|
170 |
{"role": "user", "content": user_prompt.strip()},
|
171 |
],
|
172 |
response_format={"type": "json_object"},
|
173 |
+
temperature=0.7,
|
174 |
)
|
175 |
|
176 |
if not hasattr(completion, "choices") or not completion.choices:
|
|
|
184 |
|
185 |
# Parse the JSON response
|
186 |
result = json.loads(first_choice.message.content)
|
187 |
+
|
188 |
# Cache the successful response
|
189 |
set_cached_response(cache_key, result)
|
190 |
return result
|
|
|
195 |
|
196 |
|
197 |
def generate_cards_batch(
|
198 |
+
client, model, topic, num_cards, system_prompt, generate_cloze=False, batch_size=3
|
|
|
|
|
|
|
|
|
|
|
199 |
):
|
200 |
+
"""Generate a batch of cards for a topic, potentially including cloze deletions"""
|
201 |
+
|
202 |
+
cloze_instruction = ""
|
203 |
+
if generate_cloze:
|
204 |
+
cloze_instruction = """
|
205 |
+
Where appropriate, generate Cloze deletion cards.
|
206 |
+
- For Cloze cards, set "card_type" to "cloze".
|
207 |
+
- Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
|
208 |
+
- The "answer" field should contain the full, non-cloze text or specific context for the cloze.
|
209 |
+
- For standard question/answer cards, set "card_type" to "basic".
|
210 |
+
"""
|
211 |
+
|
212 |
cards_prompt = f"""
|
213 |
Generate {num_cards} flashcards for the topic: {topic}
|
214 |
+
{cloze_instruction}
|
215 |
Return your response as a JSON object with the following structure:
|
216 |
{{
|
217 |
"cards": [
|
218 |
{{
|
219 |
+
"card_type": "basic or cloze",
|
220 |
"front": {{
|
221 |
+
"question": "question text (potentially with {{c1::cloze syntax}})"
|
222 |
}},
|
223 |
"back": {{
|
224 |
+
"answer": "concise answer or full text for cloze",
|
225 |
"explanation": "detailed explanation",
|
226 |
"example": "practical example"
|
227 |
}},
|
|
|
232 |
"difficulty": "beginner/intermediate/advanced"
|
233 |
}}
|
234 |
}}
|
235 |
+
// ... more cards
|
236 |
]
|
237 |
}}
|
238 |
"""
|
239 |
|
240 |
try:
|
241 |
+
logger.info(
|
242 |
+
f"Generating card batch for {topic}, Cloze enabled: {generate_cloze}"
|
243 |
+
)
|
244 |
response = structured_output_completion(
|
245 |
+
client, model, {"type": "json_object"}, system_prompt, cards_prompt
|
|
|
|
|
|
|
|
|
246 |
)
|
247 |
|
248 |
if not response or "cards" not in response:
|
|
|
252 |
# Convert the JSON response into Card objects
|
253 |
cards = []
|
254 |
for card_data in response["cards"]:
|
255 |
+
# Ensure required fields are present before creating Card object
|
256 |
+
if "front" not in card_data or "back" not in card_data:
|
257 |
+
logger.warning(
|
258 |
+
f"Skipping card due to missing front/back data: {card_data}"
|
259 |
+
)
|
260 |
+
continue
|
261 |
+
if "question" not in card_data["front"]:
|
262 |
+
logger.warning(f"Skipping card due to missing question: {card_data}")
|
263 |
+
continue
|
264 |
+
if (
|
265 |
+
"answer" not in card_data["back"]
|
266 |
+
or "explanation" not in card_data["back"]
|
267 |
+
or "example" not in card_data["back"]
|
268 |
+
):
|
269 |
+
logger.warning(
|
270 |
+
f"Skipping card due to missing answer/explanation/example: {card_data}"
|
271 |
+
)
|
272 |
+
continue
|
273 |
+
|
274 |
card = Card(
|
275 |
+
card_type=card_data.get("card_type", "basic"),
|
276 |
front=CardFront(**card_data["front"]),
|
277 |
back=CardBack(**card_data["back"]),
|
278 |
+
metadata=card_data.get("metadata", {}),
|
279 |
)
|
280 |
cards.append(card)
|
281 |
|
282 |
return cards
|
283 |
|
284 |
except Exception as e:
|
285 |
+
logger.error(
|
286 |
+
f"Failed to generate cards batch for {topic}: {str(e)}", exc_info=True
|
287 |
+
)
|
288 |
raise
|
289 |
|
290 |
|
291 |
# Add near the top with other constants
|
292 |
AVAILABLE_MODELS = [
|
293 |
{
|
294 |
+
"value": "gpt-4.1-mini", # Default model
|
295 |
+
"label": "gpt-4.1 Mini (Fastest)",
|
296 |
+
"description": "Balanced speed and quality",
|
297 |
},
|
298 |
{
|
299 |
+
"value": "gpt-4.1",
|
300 |
+
"label": "gpt-4.1 (Better Quality)",
|
301 |
+
"description": "Higher quality, slower generation",
|
302 |
},
|
|
|
|
|
|
|
|
|
|
|
303 |
]
|
304 |
|
305 |
GENERATION_MODES = [
|
306 |
{
|
307 |
"value": "subject",
|
308 |
"label": "Single Subject",
|
309 |
+
"description": "Generate cards for a specific topic",
|
310 |
},
|
311 |
{
|
312 |
"value": "path",
|
313 |
"label": "Learning Path",
|
314 |
+
"description": "Break down a job description or learning goal into subjects",
|
315 |
+
},
|
316 |
]
|
317 |
|
318 |
+
|
319 |
def generate_cards(
|
320 |
api_key_input,
|
321 |
subject,
|
322 |
+
model_name="gpt-4.1-mini",
|
323 |
topic_number=1,
|
324 |
cards_per_topic=2,
|
325 |
preference_prompt="assume I'm a beginner",
|
326 |
+
generate_cloze=False,
|
327 |
):
|
328 |
logger.info(f"Starting card generation for subject: {subject}")
|
329 |
+
logger.debug(
|
330 |
+
f"Parameters: topics={topic_number}, cards_per_topic={cards_per_topic}, cloze={generate_cloze}"
|
331 |
+
)
|
332 |
|
333 |
# Input validation
|
334 |
if not api_key_input:
|
|
|
340 |
if not subject.strip():
|
341 |
logger.warning("No subject provided")
|
342 |
raise gr.Error("Subject is required")
|
343 |
+
|
344 |
gr.Info("🚀 Starting card generation...")
|
345 |
+
|
346 |
try:
|
347 |
logger.debug("Initializing OpenAI client")
|
348 |
client = OpenAI(api_key=api_key_input)
|
|
|
353 |
model = model_name
|
354 |
flattened_data = []
|
355 |
total = 0
|
356 |
+
|
357 |
progress_tracker = gr.Progress(track_tqdm=True)
|
358 |
+
|
359 |
system_prompt = f"""
|
360 |
You are an expert educator in {subject}, creating an optimized learning sequence.
|
361 |
Your goal is to:
|
|
|
392 |
try:
|
393 |
logger.info("Generating topics...")
|
394 |
topics_response = structured_output_completion(
|
395 |
+
client, model, {"type": "json_object"}, system_prompt, topic_prompt
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
+
|
398 |
if not topics_response or "topics" not in topics_response:
|
399 |
logger.error("Invalid topics response format")
|
400 |
raise gr.Error("Failed to generate topics. Please try again.")
|
401 |
|
402 |
topics = topics_response["topics"]
|
403 |
+
|
404 |
gr.Info(f"✨ Generated {len(topics)} topics successfully!")
|
405 |
+
|
406 |
# Generate cards for each topic
|
407 |
+
for i, topic in enumerate(
|
408 |
+
progress_tracker.tqdm(topics, desc="Generating cards")
|
409 |
+
):
|
|
|
|
|
|
|
|
|
|
|
410 |
try:
|
411 |
cards = generate_cards_batch(
|
412 |
client,
|
|
|
414 |
topic["name"],
|
415 |
cards_per_topic,
|
416 |
system_prompt,
|
417 |
+
generate_cloze=generate_cloze,
|
418 |
+
batch_size=3,
|
419 |
)
|
420 |
+
|
421 |
if cards:
|
422 |
for card_index, card in enumerate(cards, start=1):
|
423 |
+
index = f"{i + 1}.{card_index}"
|
424 |
metadata = card.metadata or {}
|
425 |
+
|
426 |
row = [
|
427 |
index,
|
428 |
topic["name"],
|
429 |
+
card.card_type,
|
430 |
card.front.question,
|
431 |
card.back.answer,
|
432 |
card.back.explanation,
|
|
|
434 |
metadata.get("prerequisites", []),
|
435 |
metadata.get("learning_outcomes", []),
|
436 |
metadata.get("misconceptions", []),
|
437 |
+
metadata.get("difficulty", "beginner"),
|
438 |
]
|
439 |
flattened_data.append(row)
|
440 |
total += 1
|
441 |
+
|
442 |
gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
|
443 |
+
|
444 |
except Exception as e:
|
445 |
+
logger.error(
|
446 |
+
f"Failed to generate cards for topic {topic['name']}: {str(e)}"
|
447 |
+
)
|
448 |
gr.Warning(f"Failed to generate cards for '{topic['name']}'")
|
449 |
continue
|
450 |
|
|
|
454 |
<p>Total cards generated: {total}</p>
|
455 |
</div>
|
456 |
"""
|
457 |
+
|
458 |
# Convert to DataFrame with all columns
|
459 |
df = pd.DataFrame(
|
460 |
flattened_data,
|
461 |
columns=[
|
462 |
"Index",
|
463 |
"Topic",
|
464 |
+
"Card_Type",
|
465 |
"Question",
|
466 |
"Answer",
|
467 |
"Explanation",
|
|
|
469 |
"Prerequisites",
|
470 |
"Learning_Outcomes",
|
471 |
"Common_Misconceptions",
|
472 |
+
"Difficulty",
|
473 |
+
],
|
474 |
)
|
475 |
+
|
476 |
return df, final_html, total
|
477 |
|
478 |
except Exception as e:
|
|
|
483 |
# Update the BASIC_MODEL definition with enhanced CSS/HTML
|
484 |
BASIC_MODEL = genanki.Model(
|
485 |
random.randrange(1 << 30, 1 << 31),
|
486 |
+
"AnkiGen Enhanced",
|
487 |
fields=[
|
488 |
+
{"name": "Question"},
|
489 |
+
{"name": "Answer"},
|
490 |
+
{"name": "Explanation"},
|
491 |
+
{"name": "Example"},
|
492 |
+
{"name": "Prerequisites"},
|
493 |
+
{"name": "Learning_Outcomes"},
|
494 |
+
{"name": "Common_Misconceptions"},
|
495 |
+
{"name": "Difficulty"},
|
496 |
],
|
497 |
+
templates=[
|
498 |
+
{
|
499 |
+
"name": "Card 1",
|
500 |
+
"qfmt": """
|
501 |
<div class="card question-side">
|
502 |
<div class="difficulty-indicator {{Difficulty}}"></div>
|
503 |
<div class="content">
|
|
|
514 |
this.parentElement.classList.toggle('show');
|
515 |
});
|
516 |
</script>
|
517 |
+
""",
|
518 |
+
"afmt": """
|
519 |
<div class="card answer-side">
|
520 |
<div class="content">
|
521 |
<div class="question-section">
|
|
|
560 |
</div>
|
561 |
</div>
|
562 |
</div>
|
563 |
+
""",
|
564 |
+
}
|
565 |
+
],
|
566 |
+
css="""
|
567 |
/* Base styles */
|
568 |
.card {
|
569 |
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
|
|
747 |
.tab-content.active {
|
748 |
animation: fadeIn 0.2s ease-in-out;
|
749 |
}
|
750 |
+
""",
|
751 |
)
|
752 |
|
753 |
+
|
754 |
+
# Define the Cloze Model (based on Anki's default Cloze type)
|
755 |
+
CLOZE_MODEL = genanki.Model(
|
756 |
+
random.randrange(1 << 30, 1 << 31), # Needs a unique ID
|
757 |
+
"AnkiGen Cloze Enhanced",
|
758 |
+
model_type=genanki.Model.CLOZE, # Specify model type as CLOZE
|
759 |
+
fields=[
|
760 |
+
{"name": "Text"}, # Field for the text containing the cloze deletion
|
761 |
+
{"name": "Extra"}, # Field for additional info shown on the back
|
762 |
+
{"name": "Difficulty"}, # Keep metadata
|
763 |
+
{"name": "SourceTopic"}, # Add topic info
|
764 |
+
],
|
765 |
+
templates=[
|
766 |
+
{
|
767 |
+
"name": "Cloze Card",
|
768 |
+
"qfmt": "{{cloze:Text}}",
|
769 |
+
"afmt": """
|
770 |
+
{{cloze:Text}}
|
771 |
+
<hr>
|
772 |
+
<div class="extra-info">{{Extra}}</div>
|
773 |
+
<div class="metadata-footer">Difficulty: {{Difficulty}} | Topic: {{SourceTopic}}</div>
|
774 |
+
""",
|
775 |
+
}
|
776 |
+
],
|
777 |
+
css="""
|
778 |
+
.card {
|
779 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
780 |
+
font-size: 16px; line-height: 1.6; color: #1a1a1a;
|
781 |
+
max-width: 800px; margin: 0 auto; padding: 20px;
|
782 |
+
background: #ffffff;
|
783 |
+
}
|
784 |
+
.cloze {
|
785 |
+
font-weight: bold; color: #2563eb;
|
786 |
+
}
|
787 |
+
.extra-info {
|
788 |
+
margin-top: 1em; padding-top: 1em;
|
789 |
+
border-top: 1px solid #e5e7eb;
|
790 |
+
font-size: 0.95em; color: #333;
|
791 |
+
background: #f8fafc; padding: 1em; border-radius: 6px;
|
792 |
+
}
|
793 |
+
.extra-info h3 { margin-top: 0.5em; font-size: 1.1em; color: #1e293b; }
|
794 |
+
.extra-info pre code {
|
795 |
+
display: block; padding: 1em; background: #1e293b;
|
796 |
+
color: #e2e8f0; border-radius: 6px; overflow-x: auto;
|
797 |
+
font-family: 'Fira Code', 'Consolas', monospace; font-size: 0.9em;
|
798 |
+
margin-top: 0.5em;
|
799 |
+
}
|
800 |
+
.metadata-footer {
|
801 |
+
margin-top: 1.5em; font-size: 0.85em; color: #64748b; text-align: right;
|
802 |
+
}
|
803 |
+
""",
|
804 |
+
)
|
805 |
+
|
806 |
+
|
807 |
# Split the export functions
|
808 |
def export_csv(data):
|
809 |
"""Export the generated cards as a CSV file"""
|
810 |
if data is None:
|
811 |
raise gr.Error("No data to export. Please generate cards first.")
|
812 |
+
|
813 |
if len(data) < 2: # Minimum 2 cards
|
814 |
raise gr.Error("Need at least 2 cards to export.")
|
815 |
|
|
|
819 |
data.to_csv(csv_path, index=False)
|
820 |
gr.Info("✅ CSV export complete!")
|
821 |
return gr.File(value=csv_path, visible=True)
|
822 |
+
|
823 |
except Exception as e:
|
824 |
logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
|
825 |
raise gr.Error(f"Failed to export CSV: {str(e)}")
|
826 |
|
827 |
+
|
828 |
def export_deck(data, subject):
|
829 |
"""Export the generated cards as an Anki deck with pedagogical metadata"""
|
830 |
if data is None:
|
831 |
raise gr.Error("No data to export. Please generate cards first.")
|
832 |
+
|
833 |
if len(data) < 2: # Minimum 2 cards
|
834 |
raise gr.Error("Need at least 2 cards to export.")
|
835 |
|
836 |
try:
|
837 |
gr.Info("💾 Creating Anki deck...")
|
838 |
+
|
839 |
deck_id = random.randrange(1 << 30, 1 << 31)
|
840 |
deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
|
841 |
+
|
842 |
+
records = data.to_dict("records")
|
843 |
+
|
844 |
+
# Ensure both models are added to the deck package
|
845 |
+
deck.add_model(BASIC_MODEL)
|
846 |
+
deck.add_model(CLOZE_MODEL)
|
847 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
# Add notes to the deck
|
849 |
for record in records:
|
850 |
+
card_type = record.get("Card_Type", "basic").lower()
|
851 |
+
|
852 |
+
if card_type == "cloze":
|
853 |
+
# Create Cloze note
|
854 |
+
extra_content = f"""
|
855 |
+
<h3>Explanation:</h3>
|
856 |
+
<div>{record["Explanation"]}</div>
|
857 |
+
<h3>Example:</h3>
|
858 |
+
<pre><code>{record["Example"]}</code></pre>
|
859 |
+
<h3>Prerequisites:</h3>
|
860 |
+
<div>{record["Prerequisites"]}</div>
|
861 |
+
<h3>Learning Outcomes:</h3>
|
862 |
+
<div>{record["Learning_Outcomes"]}</div>
|
863 |
+
<h3>Watch out for:</h3>
|
864 |
+
<div>{record["Common_Misconceptions"]}</div>
|
865 |
+
"""
|
866 |
+
note = genanki.Note(
|
867 |
+
model=CLOZE_MODEL,
|
868 |
+
fields=[
|
869 |
+
str(record["Question"]), # Contains {{c1::...}}
|
870 |
+
extra_content, # All other info goes here
|
871 |
+
str(record["Difficulty"]),
|
872 |
+
str(record["Topic"]),
|
873 |
+
],
|
874 |
+
)
|
875 |
+
else: # Default to basic card
|
876 |
+
# Create Basic note (existing logic)
|
877 |
+
note = genanki.Note(
|
878 |
+
model=BASIC_MODEL,
|
879 |
+
fields=[
|
880 |
+
str(record["Question"]),
|
881 |
+
str(record["Answer"]),
|
882 |
+
str(record["Explanation"]),
|
883 |
+
str(record["Example"]),
|
884 |
+
str(record["Prerequisites"]),
|
885 |
+
str(record["Learning_Outcomes"]),
|
886 |
+
str(record["Common_Misconceptions"]),
|
887 |
+
str(record["Difficulty"]),
|
888 |
+
],
|
889 |
+
)
|
890 |
+
|
891 |
deck.add_note(note)
|
892 |
+
|
893 |
# Create a temporary directory for the package
|
894 |
with tempfile.TemporaryDirectory() as temp_dir:
|
895 |
output_path = Path(temp_dir) / "anki_deck.apkg"
|
896 |
package = genanki.Package(deck)
|
897 |
package.write_to_file(output_path)
|
898 |
+
|
899 |
# Copy to a more permanent location
|
900 |
final_path = "anki_deck.apkg"
|
901 |
+
with open(output_path, "rb") as src, open(final_path, "wb") as dst:
|
902 |
dst.write(src.read())
|
903 |
+
|
904 |
gr.Info("✅ Anki deck export complete!")
|
905 |
return gr.File(value=final_path, visible=True)
|
906 |
+
|
907 |
except Exception as e:
|
908 |
logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
|
909 |
raise gr.Error(f"Failed to export Anki deck: {str(e)}")
|
|
|
941 |
button_primary_text_color="white",
|
942 |
)
|
943 |
|
944 |
+
|
945 |
def analyze_learning_path(api_key, description, model):
|
946 |
"""Analyze a job description or learning goal to create a structured learning path"""
|
947 |
+
|
948 |
try:
|
949 |
client = OpenAI(api_key=api_key)
|
950 |
except Exception as e:
|
951 |
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
|
952 |
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
|
953 |
+
|
954 |
system_prompt = """You are an expert curriculum designer and educational consultant.
|
955 |
Your task is to analyze learning goals and create structured, achievable learning paths.
|
956 |
Break down complex topics into manageable subjects, identify prerequisites,
|
957 |
and suggest practical projects that reinforce learning.
|
958 |
Focus on creating a logical progression that builds upon previous knowledge."""
|
959 |
+
|
960 |
path_prompt = f"""
|
961 |
Analyze this description and create a structured learning path.
|
962 |
Return your analysis as a JSON object with the following structure:
|
|
|
975 |
Description to analyze:
|
976 |
{description}
|
977 |
"""
|
978 |
+
|
979 |
try:
|
980 |
response = structured_output_completion(
|
981 |
+
client, model, {"type": "json_object"}, system_prompt, path_prompt
|
|
|
|
|
|
|
|
|
982 |
)
|
983 |
+
|
984 |
+
if (
|
985 |
+
not response
|
986 |
+
or "subjects" not in response
|
987 |
+
or "learning_order" not in response
|
988 |
+
or "projects" not in response
|
989 |
+
):
|
990 |
+
logger.error("Invalid response format from API")
|
991 |
+
raise gr.Error("Failed to analyze learning path. Please try again.")
|
992 |
+
|
993 |
subjects_df = pd.DataFrame(response["subjects"])
|
994 |
+
learning_order_text = (
|
995 |
+
f"### Recommended Learning Order\n{response['learning_order']}"
|
996 |
+
)
|
997 |
projects_text = f"### Suggested Projects\n{response['projects']}"
|
998 |
+
|
999 |
return subjects_df, learning_order_text, projects_text
|
1000 |
+
|
1001 |
except Exception as e:
|
1002 |
logger.error(f"Failed to analyze learning path: {str(e)}")
|
1003 |
raise gr.Error(f"Failed to analyze learning path: {str(e)}")
|
1004 |
|
1005 |
+
|
1006 |
+
# --- Example Data for Initialization ---
|
1007 |
+
example_data = pd.DataFrame(
|
1008 |
+
[
|
1009 |
+
[
|
1010 |
+
"1.1",
|
1011 |
+
"SQL Basics",
|
1012 |
+
"basic",
|
1013 |
+
"What is a SELECT statement used for?",
|
1014 |
+
"Retrieving data from one or more database tables.",
|
1015 |
+
"The SELECT statement is the most common command in SQL. It allows you to specify which columns and rows you want to retrieve from a table based on certain conditions.",
|
1016 |
+
"```sql\\nSELECT column1, column2 FROM my_table WHERE condition;\\n```",
|
1017 |
+
["Understanding of database tables"],
|
1018 |
+
["Retrieve specific data", "Filter results"],
|
1019 |
+
["❌ SELECT * is always efficient (Reality: Can be slow for large tables)"],
|
1020 |
+
"beginner",
|
1021 |
+
],
|
1022 |
+
[
|
1023 |
+
"2.1",
|
1024 |
+
"Python Fundamentals",
|
1025 |
+
"cloze",
|
1026 |
+
"The primary keyword to define a function in Python is {{c1::def}}.",
|
1027 |
+
"def",
|
1028 |
+
"Functions are defined using the `def` keyword, followed by the function name, parentheses for arguments, and a colon. The indented block below defines the function body.",
|
1029 |
+
# Use a raw triple-quoted string for the code block to avoid escaping issues
|
1030 |
+
r"""```python
|
1031 |
+
def greet(name):
|
1032 |
+
print(f"Hello, {name}!")
|
1033 |
+
```""",
|
1034 |
+
["Basic programming concepts"],
|
1035 |
+
["Define reusable blocks of code"],
|
1036 |
+
["❌ Forgetting the colon (:) after the definition"],
|
1037 |
+
"beginner",
|
1038 |
+
],
|
1039 |
+
],
|
1040 |
+
columns=[
|
1041 |
+
"Index",
|
1042 |
+
"Topic",
|
1043 |
+
"Card_Type",
|
1044 |
+
"Question",
|
1045 |
+
"Answer",
|
1046 |
+
"Explanation",
|
1047 |
+
"Example",
|
1048 |
+
"Prerequisites",
|
1049 |
+
"Learning_Outcomes",
|
1050 |
+
"Common_Misconceptions",
|
1051 |
+
"Difficulty",
|
1052 |
+
],
|
1053 |
+
)
|
1054 |
+
# -------------------------------------
|
1055 |
+
|
1056 |
with gr.Blocks(
|
1057 |
theme=custom_theme,
|
1058 |
title="AnkiGen",
|
1059 |
css="""
|
1060 |
#footer {display:none !important}
|
1061 |
+
.tall-dataframe {min-height: 500px !important}
|
1062 |
+
.contain {max-width: 95% !important; margin: auto;}
|
1063 |
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
|
1064 |
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
|
1065 |
+
.export-group > .gradio-group { margin-bottom: 0 !important; padding-bottom: 5px !important; }
|
1066 |
""",
|
1067 |
+
js=js_storage,
|
1068 |
) as ankigen:
|
1069 |
with gr.Column(elem_classes="contain"):
|
1070 |
gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
|
|
|
1075 |
with gr.Row():
|
1076 |
with gr.Column(scale=1):
|
1077 |
gr.Markdown("### Configuration")
|
1078 |
+
|
1079 |
# Add mode selection
|
1080 |
generation_mode = gr.Radio(
|
1081 |
+
choices=["subject", "path"],
|
|
|
|
|
|
|
1082 |
value="subject",
|
1083 |
label="Generation Mode",
|
1084 |
+
info="Choose how you want to generate content",
|
1085 |
)
|
1086 |
+
|
1087 |
# Create containers for different modes
|
1088 |
with gr.Group() as subject_mode:
|
1089 |
subject = gr.Textbox(
|
1090 |
label="Subject",
|
1091 |
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
|
1092 |
+
info="The topic you want to generate flashcards for",
|
1093 |
)
|
1094 |
+
|
1095 |
with gr.Group(visible=False) as path_mode:
|
1096 |
description = gr.Textbox(
|
1097 |
label="Learning Goal",
|
1098 |
placeholder="Paste a job description or describe what you want to learn...",
|
1099 |
info="We'll break this down into learnable subjects",
|
1100 |
+
lines=5,
|
1101 |
+
)
|
1102 |
+
analyze_button = gr.Button(
|
1103 |
+
"Analyze & Break Down", variant="secondary"
|
1104 |
)
|
1105 |
+
|
|
|
1106 |
# Common settings
|
1107 |
api_key_input = gr.Textbox(
|
1108 |
label="OpenAI API Key",
|
1109 |
type="password",
|
1110 |
placeholder="Enter your OpenAI API key",
|
1111 |
value=os.getenv("OPENAI_API_KEY", ""),
|
1112 |
+
info="Your OpenAI API key starting with 'sk-'",
|
1113 |
)
|
1114 |
+
|
1115 |
# Generation Button
|
1116 |
generate_button = gr.Button("Generate Cards", variant="primary")
|
1117 |
|
1118 |
# Advanced Settings in Accordion
|
1119 |
with gr.Accordion("Advanced Settings", open=False):
|
1120 |
model_choice = gr.Dropdown(
|
1121 |
+
choices=["gpt-4.1-mini", "gpt-4.1"],
|
1122 |
+
value="gpt-4.1-mini",
|
1123 |
+
label="Model Selection",
|
1124 |
+
info="Select the AI model to use for generation",
|
|
|
|
|
|
|
|
|
1125 |
)
|
1126 |
+
|
1127 |
# Add tooltip/description for models
|
1128 |
model_info = gr.Markdown("""
|
1129 |
**Model Information:**
|
1130 |
+
- **gpt-4.1-mini**: Fastest option, good for most use cases
|
1131 |
+
- **gpt-4.1**: Better quality, takes longer to generate
|
|
|
1132 |
""")
|
1133 |
+
|
1134 |
topic_number = gr.Slider(
|
1135 |
label="Number of Topics",
|
1136 |
minimum=2,
|
|
|
1153 |
info="Customize how the content is presented",
|
1154 |
lines=3,
|
1155 |
)
|
1156 |
+
generate_cloze_checkbox = gr.Checkbox(
|
1157 |
+
label="Generate Cloze Cards (Experimental)",
|
1158 |
+
value=False,
|
1159 |
+
info="Allow the AI to generate fill-in-the-blank style cards where appropriate.",
|
1160 |
+
)
|
1161 |
|
1162 |
# Right column - add a new container for learning path results
|
1163 |
with gr.Column(scale=2):
|
|
|
1166 |
subjects_list = gr.Dataframe(
|
1167 |
headers=["Subject", "Prerequisites", "Time Estimate"],
|
1168 |
label="Recommended Subjects",
|
1169 |
+
interactive=False,
|
1170 |
)
|
1171 |
learning_order = gr.Markdown("### Recommended Learning Order")
|
1172 |
projects = gr.Markdown("### Suggested Projects")
|
1173 |
+
|
1174 |
# Replace generate_selected with use_subjects
|
1175 |
use_subjects = gr.Button(
|
1176 |
"Use These Subjects ℹ️", # Added info emoji to button text
|
1177 |
+
variant="primary",
|
1178 |
)
|
1179 |
gr.Markdown(
|
1180 |
"*Click to copy subjects to main input for card generation*",
|
1181 |
+
elem_classes="hint-text",
|
1182 |
)
|
1183 |
+
|
1184 |
# Existing output components
|
1185 |
with gr.Group() as cards_output:
|
1186 |
gr.Markdown("### Generated Cards")
|
1187 |
+
|
1188 |
# Output Format Documentation
|
1189 |
+
with gr.Accordion("Output Format", open=False):
|
1190 |
gr.Markdown("""
|
1191 |
The generated cards include:
|
1192 |
|
1193 |
* **Index**: Unique identifier for each card
|
1194 |
* **Topic**: The specific subtopic within your subject
|
1195 |
+
* **Card_Type**: Type of card (basic or cloze)
|
1196 |
* **Question**: Clear, focused question for the flashcard front
|
1197 |
* **Answer**: Concise core answer
|
1198 |
* **Explanation**: Detailed conceptual explanation
|
|
|
1211 |
with gr.Accordion("Example Card Format", open=False):
|
1212 |
gr.Code(
|
1213 |
label="Example Card",
|
1214 |
+
value="""
|
1215 |
{
|
1216 |
"front": {
|
1217 |
"question": "What is a PRIMARY KEY constraint in SQL?"
|
|
|
1231 |
"difficulty": "beginner"
|
1232 |
}
|
1233 |
}
|
1234 |
+
""",
|
1235 |
+
language="json",
|
1236 |
)
|
1237 |
+
|
1238 |
# Dataframe Output
|
1239 |
output = gr.Dataframe(
|
1240 |
+
value=example_data,
|
1241 |
headers=[
|
1242 |
"Index",
|
1243 |
"Topic",
|
1244 |
+
"Card_Type",
|
1245 |
"Question",
|
1246 |
"Answer",
|
1247 |
"Explanation",
|
|
|
1249 |
"Prerequisites",
|
1250 |
"Learning_Outcomes",
|
1251 |
"Common_Misconceptions",
|
1252 |
+
"Difficulty",
|
1253 |
],
|
1254 |
interactive=True,
|
1255 |
elem_classes="tall-dataframe",
|
1256 |
wrap=True,
|
1257 |
+
column_widths=[
|
1258 |
+
50,
|
1259 |
+
100,
|
1260 |
+
80,
|
1261 |
+
200,
|
1262 |
+
200,
|
1263 |
+
250,
|
1264 |
+
200,
|
1265 |
+
150,
|
1266 |
+
150,
|
1267 |
+
150,
|
1268 |
+
100,
|
1269 |
+
],
|
1270 |
)
|
1271 |
|
1272 |
# Export Controls
|
1273 |
+
with gr.Group(elem_classes="export-group"):
|
1274 |
+
gr.Markdown("#### Export Generated Cards")
|
1275 |
+
with gr.Row():
|
1276 |
+
export_csv_button = gr.Button(
|
1277 |
+
"Export to CSV", variant="secondary"
|
1278 |
+
)
|
1279 |
+
export_anki_button = gr.Button(
|
1280 |
+
"Export to Anki Deck (.apkg)", variant="secondary"
|
1281 |
+
)
|
1282 |
+
# Re-wrap File components in an invisible Row
|
1283 |
+
with gr.Row(visible=False):
|
1284 |
+
download_csv = gr.File(
|
1285 |
+
label="Download CSV", interactive=False, visible=False
|
1286 |
+
)
|
1287 |
+
download_anki = gr.File(
|
1288 |
+
label="Download Anki Deck",
|
1289 |
+
interactive=False,
|
1290 |
+
visible=False,
|
1291 |
+
)
|
1292 |
|
1293 |
# Add near the top of the Blocks
|
1294 |
with gr.Row():
|
1295 |
progress = gr.HTML(visible=False)
|
1296 |
+
total_cards = gr.Number(
|
1297 |
+
label="Total Cards Generated", value=0, visible=False
|
1298 |
+
)
|
1299 |
|
1300 |
# Add JavaScript to handle mode switching
|
1301 |
def update_mode_visibility(mode):
|
1302 |
"""Update component visibility based on selected mode and clear values"""
|
1303 |
+
is_subject = mode == "subject"
|
1304 |
+
is_path = mode == "path"
|
1305 |
+
|
1306 |
# Clear values when switching modes
|
1307 |
if is_path:
|
1308 |
subject.value = "" # Clear subject when switching to path mode
|
1309 |
else:
|
1310 |
+
description.value = (
|
1311 |
+
"" # Clear description when switching to subject mode
|
1312 |
+
)
|
1313 |
+
|
1314 |
return {
|
1315 |
subject_mode: gr.update(visible=is_subject),
|
1316 |
path_mode: gr.update(visible=is_path),
|
|
|
1320 |
description: gr.update(value="") if not is_path else gr.update(),
|
1321 |
output: gr.update(value=None), # Clear previous output
|
1322 |
progress: gr.update(value="", visible=False),
|
1323 |
+
total_cards: gr.update(value=0, visible=False),
|
1324 |
}
|
1325 |
|
1326 |
# Update the mode switching handler to include all components that need clearing
|
|
|
1336 |
description,
|
1337 |
output,
|
1338 |
progress,
|
1339 |
+
total_cards,
|
1340 |
+
],
|
1341 |
)
|
1342 |
+
|
1343 |
# Add handler for path analysis
|
1344 |
analyze_button.click(
|
1345 |
fn=analyze_learning_path,
|
1346 |
inputs=[api_key_input, description, model_choice],
|
1347 |
+
outputs=[subjects_list, learning_order, projects],
|
1348 |
)
|
1349 |
+
|
1350 |
# Add this function to handle copying subjects to main input
|
1351 |
+
def use_selected_subjects(subjects_df):
|
1352 |
"""Copy selected subjects to main input and switch to subject mode"""
|
1353 |
if subjects_df is None or subjects_df.empty:
|
1354 |
+
gr.Warning("No subjects available to copy from Learning Path analysis.")
|
1355 |
+
# Return updates for all relevant output components to avoid errors
|
1356 |
+
return (
|
1357 |
+
gr.update(),
|
1358 |
+
gr.update(),
|
1359 |
+
gr.update(),
|
1360 |
+
gr.update(),
|
1361 |
+
gr.update(),
|
1362 |
+
gr.update(),
|
1363 |
+
gr.update(),
|
1364 |
+
gr.update(),
|
1365 |
+
gr.update(),
|
1366 |
+
)
|
1367 |
+
|
1368 |
subjects = subjects_df["Subject"].tolist()
|
1369 |
combined_subject = ", ".join(subjects)
|
1370 |
+
suggested_topics = min(
|
1371 |
+
len(subjects) + 1, 20
|
1372 |
+
) # Suggest topics = num subjects + 1
|
1373 |
+
|
1374 |
+
# Return updates for relevant components
|
1375 |
return (
|
1376 |
+
"subject", # Set mode to subject
|
1377 |
+
gr.update(visible=True), # Show subject_mode group
|
1378 |
+
gr.update(visible=False), # Hide path_mode group
|
1379 |
+
gr.update(visible=False), # Hide path_results group
|
1380 |
+
gr.update(visible=True), # Show cards_output group
|
1381 |
+
combined_subject, # Update subject textbox value
|
1382 |
+
suggested_topics, # Update topic_number slider value
|
1383 |
+
# Update preference prompt
|
1384 |
+
"Focus on connections between these subjects and their practical applications.",
|
1385 |
+
example_data, # Reset output to example data - THIS NOW WORKS
|
1386 |
)
|
1387 |
|
1388 |
+
# Correct the outputs for the use_subjects click handler
|
1389 |
use_subjects.click(
|
1390 |
fn=use_selected_subjects,
|
1391 |
+
inputs=[subjects_list], # Only needs the dataframe
|
1392 |
+
outputs=[ # Match the return tuple of the function
|
1393 |
generation_mode,
|
1394 |
+
subject_mode, # Group visibility
|
1395 |
+
path_mode, # Group visibility
|
1396 |
+
path_results, # Group visibility
|
1397 |
+
cards_output, # Group visibility
|
1398 |
+
subject, # Component value
|
1399 |
+
topic_number, # Component value
|
1400 |
+
preference_prompt, # Component value
|
1401 |
+
output, # Component value
|
1402 |
+
],
|
|
|
1403 |
)
|
1404 |
|
1405 |
# Simplified event handlers
|
|
|
1408 |
inputs=[
|
1409 |
api_key_input,
|
1410 |
subject,
|
1411 |
+
model_choice,
|
1412 |
topic_number,
|
1413 |
cards_per_topic,
|
1414 |
preference_prompt,
|
1415 |
+
generate_cloze_checkbox,
|
1416 |
],
|
1417 |
outputs=[output, progress, total_cards],
|
1418 |
+
show_progress="full",
|
1419 |
)
|
1420 |
|
1421 |
export_csv_button.click(
|
pyproject.toml
CHANGED
@@ -4,22 +4,23 @@ build-backend = "setuptools.build_meta"
|
|
4 |
|
5 |
[project]
|
6 |
name = "ankigen"
|
7 |
-
version = "0.
|
8 |
description = ""
|
9 |
authors = [
|
10 |
-
{name = "Justin", email = "[email protected]"}
|
11 |
]
|
12 |
readme = "README.md"
|
13 |
requires-python = ">=3.12"
|
14 |
dependencies = [
|
15 |
"openai>=1.35.10",
|
16 |
"gradio>=4.44.1",
|
|
|
|
|
|
|
17 |
]
|
18 |
|
19 |
[project.optional-dependencies]
|
20 |
-
dev = [
|
21 |
-
"ipykernel>=6.29.5",
|
22 |
-
]
|
23 |
|
24 |
[tool.setuptools]
|
25 |
-
py-modules = ["app"]
|
|
|
4 |
|
5 |
[project]
|
6 |
name = "ankigen"
|
7 |
+
version = "0.2.0"
|
8 |
description = ""
|
9 |
authors = [
|
10 |
+
{ name = "Justin", email = "[email protected]" },
|
11 |
]
|
12 |
readme = "README.md"
|
13 |
requires-python = ">=3.12"
|
14 |
dependencies = [
|
15 |
"openai>=1.35.10",
|
16 |
"gradio>=4.44.1",
|
17 |
+
"tenacity>=9.1.2",
|
18 |
+
"genanki>=0.13.1",
|
19 |
+
"pydantic==2.10.6",
|
20 |
]
|
21 |
|
22 |
[project.optional-dependencies]
|
23 |
+
dev = ["ipykernel>=6.29.5"]
|
|
|
|
|
24 |
|
25 |
[tool.setuptools]
|
26 |
+
py-modules = ["app"]
|
requirements.txt
CHANGED
@@ -1,5 +1,60 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
-e file:///home/justin/Documents/Code/ankigen
|
3 |
+
annotated-types==0.7.0
|
4 |
+
anyio==4.9.0
|
5 |
+
cached-property==2.0.1
|
6 |
+
certifi==2025.1.31
|
7 |
+
charset-normalizer==3.4.1
|
8 |
+
chevron==0.14.0
|
9 |
+
click==8.1.8
|
10 |
+
distro==1.9.0
|
11 |
+
fastapi==0.115.12
|
12 |
+
ffmpy==0.5.0
|
13 |
+
filelock==3.18.0
|
14 |
+
frozendict==2.4.6
|
15 |
+
fsspec==2025.3.2
|
16 |
+
genanki==0.13.1
|
17 |
+
gradio==5.3.0
|
18 |
+
gradio-client==1.4.2
|
19 |
+
h11==0.14.0
|
20 |
+
httpcore==1.0.8
|
21 |
+
httpx==0.28.1
|
22 |
+
huggingface-hub==0.30.2
|
23 |
+
idna==3.10
|
24 |
+
jinja2==3.1.6
|
25 |
+
jiter==0.9.0
|
26 |
+
markdown-it-py==3.0.0
|
27 |
+
markupsafe==2.1.5
|
28 |
+
mdurl==0.1.2
|
29 |
+
numpy==2.2.4
|
30 |
+
openai==1.75.0
|
31 |
+
orjson==3.10.16
|
32 |
+
packaging==24.2
|
33 |
+
pandas==2.2.3
|
34 |
+
pillow==10.4.0
|
35 |
+
pydantic==2.10.6
|
36 |
+
pydantic-core==2.27.2
|
37 |
+
pydub==0.25.1
|
38 |
+
pygments==2.19.1
|
39 |
+
python-dateutil==2.9.0.post0
|
40 |
+
python-multipart==0.0.20
|
41 |
+
pytz==2025.2
|
42 |
+
pyyaml==6.0.2
|
43 |
+
requests==2.32.3
|
44 |
+
rich==14.0.0
|
45 |
+
ruff==0.11.6
|
46 |
+
semantic-version==2.10.0
|
47 |
+
shellingham==1.5.4
|
48 |
+
six==1.17.0
|
49 |
+
sniffio==1.3.1
|
50 |
+
starlette==0.46.2
|
51 |
+
tenacity==9.1.2
|
52 |
+
tomlkit==0.12.0
|
53 |
+
tqdm==4.67.1
|
54 |
+
typer==0.15.2
|
55 |
+
typing-extensions==4.13.2
|
56 |
+
typing-inspection==0.4.0
|
57 |
+
tzdata==2025.2
|
58 |
+
urllib3==2.4.0
|
59 |
+
uvicorn==0.34.1
|
60 |
+
websockets==12.0
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|