Spaces:
Sleeping
Sleeping
| import torch | |
| from torchvision import transforms | |
| from PIL import Image | |
| import streamlit as st | |
| import json | |
| from torchvision.models import efficientnet_b7, EfficientNet_B7_Weights | |
| import torch.nn as nn | |
| # Charger les noms des classes | |
| with open("class_names.json", "r") as f: | |
| class_names = json.load(f) | |
| # Charger le modèle avec des poids pré-entraînés | |
| weights = EfficientNet_B7_Weights.DEFAULT | |
| base_model = efficientnet_b7(weights=weights) | |
| # Adapter le modèle pour la classification | |
| class CustomEfficientNet(nn.Module): | |
| def __init__(self, base_model, num_classes): | |
| super(CustomEfficientNet, self).__init__() | |
| self.base = nn.Sequential(*list(base_model.children())[:-2]) | |
| self.global_avg_pool = nn.AdaptiveAvgPool2d(1) | |
| self.fc1 = nn.Linear(2560, 512) | |
| self.relu = nn.ReLU() | |
| self.fc2 = nn.Linear(512, num_classes) | |
| def forward(self, x): | |
| x = self.base(x) | |
| x = self.global_avg_pool(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.relu(self.fc1(x)) | |
| x = self.fc2(x) | |
| return x | |
| # Définir le modèle final | |
| num_classes = 2 | |
| model = CustomEfficientNet(base_model, num_classes).to("cuda" if torch.cuda.is_available() else "cpu") | |
| model.load_state_dict(torch.load("efficientnet_b7_best.pth",weights_only=False)) | |
| model.eval() # Passer le modèle en mode évaluation | |
| # Définir la taille de l'image | |
| image_size = (224, 224) | |
| # Transformation pour l'image | |
| class GrayscaleToRGB: | |
| def __call__(self, img): | |
| return img.convert("RGB") | |
| valid_test_transforms = transforms.Compose([ | |
| transforms.Grayscale(num_output_channels=1), | |
| transforms.Resize(image_size), | |
| GrayscaleToRGB(), # Conversion en RGB | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| ]) | |
| # Fonction de prédiction | |
| def predict_image(image): | |
| image_tensor = valid_test_transforms(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| outputs = model(image_tensor) | |
| _, predicted_class = torch.max(outputs, 1) | |
| predicted_label = class_names[predicted_class.item()] | |
| return predicted_label | |
| # Interface Streamlit | |
| st.title("Prédiction d'images avec PyTorch") | |
| st.write("Chargez une image pour obtenir une prédiction de classe.") | |
| uploaded_image = st.file_uploader("Téléchargez une image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_image is not None: | |
| image = Image.open(uploaded_image) | |
| st.image(image, caption="Image téléchargée", use_column_width=True) | |
| predicted_label = predict_image(image) | |
| st.write(f"Prédiction de la classe : {predicted_label}") | |