File size: 23,722 Bytes
6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 6b5f0c3 544ffe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import os
import requests
import json
import logging
import time # Import time for retries
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
API_KEYS = {
"HUGGINGFACE": 'HF_TOKEN', # Note: HF_TOKEN is also for HF Hub, so maybe rename this in UI label?
"GROQ": 'GROQ_API_KEY',
"OPENROUTER": 'OPENROUTER_API_KEY',
"TOGETHERAI": 'TOGETHERAI_API_KEY',
"COHERE": 'COHERE_API_KEY',
"XAI": 'XAI_API_KEY',
"OPENAI": 'OPENAI_API_KEY',
"GOOGLE": 'GOOGLE_API_KEY',
}
API_URLS = {
"HUGGINGFACE": 'https://api-inference.huggingface.co/models/',
"GROQ": 'https://api.groq.com/openai/v1/chat/completions',
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
"COHERE": 'https://api.cohere.ai/v1/chat',
"XAI": 'https://api.x.ai/v1/chat/completions',
"OPENAI": 'https://api.openai.com/v1/chat/completions',
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/', # Base URL, model ID added later
}
# Load model configuration from JSON
try:
with open("models.json", "r") as f:
MODELS_BY_PROVIDER = json.load(f)
logger.info("models.json loaded successfully.")
except FileNotFoundError:
logger.error("models.json not found. Using hardcoded fallback models.")
# Keep the hardcoded fallback as a safety measure
MODELS_BY_PROVIDER = {
"groq": {
"default": "llama3-8b-8192",
"models": {
"Llama 3 8B (Groq)": "llama3-8b-8192",
"Llama 3 70B (Groq)": "llama3-70b-8192",
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768",
"Gemma 7B (Groq)": "gemma-7b-it",
}
},
"openrouter": {
"default": "nousresearch/llama-3-8b-instruct",
"models": {
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
"Mistral 7B Instruct v0.2 (OpenRouter)": "mistralai/mistral-7b-instruct:free",
"Gemma 7B Instruct (OpenRouter)": "google/gemma-7b-it:free",
}
},
"google": {
"default": "gemini-1.5-flash-latest",
"models": {
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
}
},
"openai": {
"default": "gpt-3.5-turbo",
"models": {
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo",
}
},
# Add other providers here if needed for fallback
}
except json.JSONDecodeError:
logger.error("Error decoding models.json. Using hardcoded fallback models.")
# Keep the hardcoded fallback as a safety measure
MODELS_BY_PROVIDER = {
"groq": {
"default": "llama3-8b-8192",
"models": {
"Llama 3 8B (Groq)": "llama3-8b-8192",
"Llama 3 70B (Groq)": "llama3-70b-8192",
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768",
"Gemma 7B (Groq)": "gemma-7b-it",
}
},
"openrouter": {
"default": "nousresearch/llama-3-8b-instruct",
"models": {
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
"Mistral 7B Instruct v0.2 (OpenRouter)": "mistralai/mistral-7b-instruct:free",
"Gemma 7B Instruct (OpenRouter)": "google/gemma-7b-it:free",
}
},
"google": {
"default": "gemini-1.5-flash-latest",
"models": {
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
}
},
"openai": {
"default": "gpt-3.5-turbo",
"models": {
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo",
}
},
# Add other providers here if needed for fallback
}
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str:
if ui_api_key_override:
logger.debug(f"Using UI API key override for {provider}")
return ui_api_key_override.strip()
env_var_name = API_KEYS.get(provider.upper())
if env_var_name:
env_key = os.getenv(env_var_name)
if env_key:
logger.debug(f"Using env var {env_var_name} for {provider}")
return env_key.strip()
# Special case for Hugging Face, HF_TOKEN is common
if provider.lower() == 'huggingface':
hf_token = os.getenv("HF_TOKEN")
if hf_token:
logger.debug(f"Using HF_TOKEN env var for {provider}")
return hf_token.strip()
logger.warning(f"API Key not found for provider '{provider}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.")
return None
def get_available_providers() -> list[str]:
return sorted(list(MODELS_BY_PROVIDER.keys()))
def get_models_for_provider(provider: str) -> list[str]:
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
def get_default_model_for_provider(provider: str) -> str | None:
models_dict = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
default_model_id = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("default")
if default_model_id:
# Find the display name corresponding to the default model ID
for display_name, model_id in models_dict.items():
if model_id == default_model_id:
return display_name
# Fallback: If no default specified or found, return the first model in the sorted list
if models_dict:
return sorted(list(models_dict.keys()))[0]
return None
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
return models.get(display_name)
def generate_stream(provider: str, model_display_name: str, api_key_override: str, messages: list[dict]) -> iter:
provider_lower = provider.lower()
api_key = _get_api_key(provider_lower, api_key_override)
base_url = API_URLS.get(provider.upper())
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
if not api_key:
env_var_name = API_KEYS.get(provider.upper(), 'N/A')
yield f"Error: API Key not found for {provider}. Please set it in the UI override or environment variable '{env_var_name}'."
return
if not base_url:
yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
return
if not model_id:
yield f"Error: Unknown model '{model_display_name}' for provider '{provider}'. Please select a valid model."
return
headers = {}
payload = {}
request_url = base_url
timeout_seconds = 180 # Increased timeout
logger.info(f"Calling {provider}/{model_display_name} (ID: {model_id}) stream...")
try:
if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]:
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {
"model": model_id,
"messages": messages,
"stream": True,
"temperature": 0.7, # Add temperature
"max_tokens": 4096 # Add max_tokens
}
if provider_lower == "openrouter":
headers["HTTP-Referer"] = os.getenv("SPACE_HOST") or "https://github.com/your_username/ai-space-commander" # Use space name
headers["X-Title"] = "Hugging Face Space Commander" # Use project title
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
# Attempt to read error body if available
error_body = response.text
logger.error(f"HTTP Error during stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
while b'\n' in byte_buffer:
line, byte_buffer = byte_buffer.split(b'\n', 1)
decoded_line = line.decode('utf-8', errors='ignore')
if decoded_line.startswith('data: '):
data = decoded_line[6:]
if data == '[DONE]':
byte_buffer = b'' # Clear buffer after DONE
break
try:
event_data = json.loads(data)
if event_data.get("choices") and len(event_data["choices"]) > 0:
delta = event_data["choices"][0].get("delta")
if delta and delta.get("content"):
yield delta["content"]
except json.JSONDecodeError:
# Log warning but continue, partial data might be okay or next line fixes it
logger.warning(f"Failed to decode JSON from stream line: {decoded_line.strip()}")
except Exception as e:
logger.error(f"Error processing stream data: {e}, Data: {decoded_line.strip()}")
# Process any remaining data in the buffer after the loop
if byte_buffer:
remaining_line = byte_buffer.decode('utf-8', errors='ignore').strip()
if remaining_line.startswith('data: '):
data = remaining_line[6:]
if data != '[DONE]':
try:
event_data = json.loads(data)
if event_data.get("choices") and len(event_data["choices"]) > 0:
delta = event_data["choices"][0].get("delta")
if delta and delta.get("content"):
yield delta["content"]
except json.JSONDecodeError:
logger.warning(f"Failed to decode final stream buffer JSON: {remaining_line}")
except Exception as e:
logger.error(f"Error processing final stream buffer data: {e}, Data: {remaining_line}")
elif provider_lower == "google":
system_instruction = None
filtered_messages = []
for msg in messages:
if msg["role"] == "system":
# Google's API takes system instruction separately or expects a specific history format
# Let's extract the system instruction
system_instruction = msg["content"]
else:
# Map roles: 'user' -> 'user', 'assistant' -> 'model'
role = "model" if msg["role"] == "assistant" else msg["role"]
filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]})
# Ensure conversation history alternates roles correctly for Google
# Simple check: if last two roles are same, it's invalid.
for i in range(1, len(filtered_messages)):
if filtered_messages[i]["role"] == filtered_messages[i-1]["role"]:
yield f"Error: Google API requires alternating user/model roles in chat history. Please check prompt or history format."
return # Stop if history format is invalid
payload = {
"contents": filtered_messages,
"safetySettings": [ # Default safety settings to allow helpful but potentially sensitive code/instructions
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
],
"generationConfig": {
"temperature": 0.7,
"maxOutputTokens": 4096 # Google's max_tokens equivalent
}
}
# System instruction is passed separately
if system_instruction:
payload["system_instruction"] = {"parts": [{"text": system_instruction}]}
request_url = f"{base_url}{model_id}:streamGenerateContent"
# API key is passed as a query parameter for Google
request_url = f"{request_url}?key={api_key}"
headers = {"Content-Type": "application/json"} # Content-Type is still application/json
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
error_body = response.text
logger.error(f"HTTP Error during Google stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during Google stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
# Google's streaming can send multiple JSON objects in one chunk, sometimes split by newlines
# Or just single JSON objects. They don't strictly follow the Server-Sent Events 'data:' format.
# We need to find JSON objects in the buffer.
json_decoder = json.JSONDecoder()
while byte_buffer:
try:
# Attempt to decode a JSON object from the start of the buffer
obj, idx = json_decoder.raw_decode(byte_buffer.decode('utf-8', errors='ignore').lstrip()) # lstrip to handle leading whitespace/newlines
# If successful, process the object
byte_buffer = byte_buffer[len(byte_buffer.decode('utf-8', errors='ignore').lstrip()[:idx]).encode('utf-8'):] # Remove the decoded part from the buffer
if obj.get("candidates") and len(obj["candidates"]) > 0:
candidate = obj["candidates"][0]
if candidate.get("content") and candidate["content"].get("parts"):
full_text_chunk = "".join(part.get("text", "") for part in candidate["content"]["parts"])
if full_text_chunk:
yield full_text_chunk
# Check for potential errors in the response object itself
if obj.get("error"):
error_details = obj["error"].get("message", str(obj["error"]))
logger.error(f"Google API returned error in stream data: {error_details}")
yield f"API Error (Google): {error_details}"
return # Stop streaming
except json.JSONDecodeError:
# If raw_decode fails, it means the buffer doesn't contain a complete JSON object at the start.
# Break the inner while loop and wait for more data.
break
except Exception as e:
logger.error(f"Error processing Google stream data object: {e}, Object: {obj}")
# Decide if this is a fatal error or just a bad chunk
# For now, log and continue might be okay for processing subsequent chunks.
# If loop finishes and buffer still has data, log it (incomplete data)
if byte_buffer:
logger.warning(f"Remaining data in Google stream buffer after processing: {byte_buffer.decode('utf-8', errors='ignore')}")
elif provider_lower == "cohere":
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
request_url = f"{base_url}"
chat_history_for_cohere = []
system_prompt_for_cohere = None
current_message_for_cohere = ""
# Cohere requires a specific history format and separates system/preamble
# The last message is the "message", previous are "chat_history"
temp_history = []
for msg in messages:
if msg["role"] == "system":
# If multiple system prompts, concatenate them for preamble
if system_prompt_for_cohere: system_prompt_for_cohere += "\n" + msg["content"]
else: system_prompt_for_cohere = msg["content"]
elif msg["role"] == "user" or msg["role"] == "assistant":
temp_history.append(msg)
if not temp_history:
yield "Error: No user message found for Cohere API call."
return
if temp_history[-1]["role"] != "user":
yield "Error: Last message must be from user for Cohere API call."
return
current_message_for_cohere = temp_history[-1]["content"]
# Map roles: 'user' -> 'user', 'assistant' -> 'chatbot'
chat_history_for_cohere = [{"role": ("chatbot" if m["role"] == "assistant" else m["role"]), "message": m["content"]} for m in temp_history[:-1]]
payload = {
"model": model_id,
"message": current_message_for_cohere,
"stream": True,
"temperature": 0.7,
"max_tokens": 4096 # Add max_tokens
}
if chat_history_for_cohere:
payload["chat_history"] = chat_history_for_cohere
if system_prompt_for_cohere:
payload["preamble"] = system_prompt_for_cohere
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
error_body = response.text
logger.error(f"HTTP Error during Cohere stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during Cohere stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
while b'\n\n' in byte_buffer: # Cohere uses \n\n as event separator
event_chunk, byte_buffer = byte_buffer.split(b'\n\n', 1)
lines = event_chunk.strip().split(b'\n')
event_type = None
event_data = None
for l in lines:
if l.strip() == b"": continue # Skip blank lines within an event
if l.startswith(b"event: "): event_type = l[7:].strip().decode('utf-8', errors='ignore')
elif l.startswith(b"data: "):
try: event_data = json.loads(l[6:].strip().decode('utf-8', errors='ignore'))
except json.JSONDecodeError: logger.warning(f"Cohere: Failed to decode event data JSON: {l[6:].strip()}")
else:
# Log unexpected lines in event chunk
logger.warning(f"Cohere: Unexpected line in event chunk: {l.decode('utf-8', errors='ignore').strip()}")
if event_type == "text-generation" and event_data and "text" in event_data:
yield event_data["text"]
elif event_type == "stream-end":
logger.debug("Cohere stream-end event received.")
byte_buffer = b'' # Clear buffer after stream-end
break # Exit the while loop
elif event_type == "error":
error_msg = event_data.get("message", str(event_data)) if event_data else "Unknown Cohere stream error"
logger.error(f"Cohere stream error event: {error_msg}")
yield f"API Error (Cohere stream): {error_msg}"
return # Stop streaming on error
# Process any remaining data in the buffer after the loop
if byte_buffer:
logger.warning(f"Remaining data in Cohere stream buffer after processing: {byte_buffer.decode('utf-8', errors='ignore')}")
elif provider_lower == "huggingface":
# Hugging Face Inference API often supports streaming for text-generation,
# but chat completion streaming format varies greatly model by model, if supported.
# Standard OpenAI-like streaming is not guaranteed.
# Let's provide a more informative message.
yield f"Error: Direct Hugging Face Inference API streaming for chat models is highly experimental and depends heavily on the specific model's implementation. Standard OpenAI-like streaming is NOT guaranteed. For better compatibility with HF models that support the OpenAI format, consider using the OpenRouter or TogetherAI providers and selecting the HF models listed there."
return
else:
yield f"Error: Unsupported provider '{provider}' for streaming chat."
return
except requests.exceptions.HTTPError as e:
status_code = e.response.status_code if e.response is not None else 'N/A'
error_text = e.response.text if e.response is not None else 'No response text'
logger.error(f"HTTP error during streaming for {provider}/{model_id}: {e}")
yield f"API HTTP Error ({status_code}): {error_text}\nDetails: {e}"
except requests.exceptions.Timeout:
logger.error(f"Request Timeout after {timeout_seconds} seconds for {provider}/{model_id}.")
yield f"API Request Timeout: The request took too long to complete ({timeout_seconds} seconds)."
except requests.exceptions.RequestException as e:
logger.error(f"Request error during streaming for {provider}/{model_id}: {e}")
yield f"API Request Error: Could not connect or receive response from {provider} ({e})"
except Exception as e:
logger.exception(f"Unexpected error during streaming for {provider}/{model_id}:")
yield f"An unexpected error occurred during streaming: {e}" |