broadfield-dev's picture
Update model_logic.py
544ffe5 verified
raw
history blame
23.7 kB
import os
import requests
import json
import logging
import time # Import time for retries
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
API_KEYS = {
"HUGGINGFACE": 'HF_TOKEN', # Note: HF_TOKEN is also for HF Hub, so maybe rename this in UI label?
"GROQ": 'GROQ_API_KEY',
"OPENROUTER": 'OPENROUTER_API_KEY',
"TOGETHERAI": 'TOGETHERAI_API_KEY',
"COHERE": 'COHERE_API_KEY',
"XAI": 'XAI_API_KEY',
"OPENAI": 'OPENAI_API_KEY',
"GOOGLE": 'GOOGLE_API_KEY',
}
API_URLS = {
"HUGGINGFACE": 'https://api-inference.huggingface.co/models/',
"GROQ": 'https://api.groq.com/openai/v1/chat/completions',
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
"COHERE": 'https://api.cohere.ai/v1/chat',
"XAI": 'https://api.x.ai/v1/chat/completions',
"OPENAI": 'https://api.openai.com/v1/chat/completions',
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/', # Base URL, model ID added later
}
# Load model configuration from JSON
try:
with open("models.json", "r") as f:
MODELS_BY_PROVIDER = json.load(f)
logger.info("models.json loaded successfully.")
except FileNotFoundError:
logger.error("models.json not found. Using hardcoded fallback models.")
# Keep the hardcoded fallback as a safety measure
MODELS_BY_PROVIDER = {
"groq": {
"default": "llama3-8b-8192",
"models": {
"Llama 3 8B (Groq)": "llama3-8b-8192",
"Llama 3 70B (Groq)": "llama3-70b-8192",
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768",
"Gemma 7B (Groq)": "gemma-7b-it",
}
},
"openrouter": {
"default": "nousresearch/llama-3-8b-instruct",
"models": {
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
"Mistral 7B Instruct v0.2 (OpenRouter)": "mistralai/mistral-7b-instruct:free",
"Gemma 7B Instruct (OpenRouter)": "google/gemma-7b-it:free",
}
},
"google": {
"default": "gemini-1.5-flash-latest",
"models": {
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
}
},
"openai": {
"default": "gpt-3.5-turbo",
"models": {
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo",
}
},
# Add other providers here if needed for fallback
}
except json.JSONDecodeError:
logger.error("Error decoding models.json. Using hardcoded fallback models.")
# Keep the hardcoded fallback as a safety measure
MODELS_BY_PROVIDER = {
"groq": {
"default": "llama3-8b-8192",
"models": {
"Llama 3 8B (Groq)": "llama3-8b-8192",
"Llama 3 70B (Groq)": "llama3-70b-8192",
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768",
"Gemma 7B (Groq)": "gemma-7b-it",
}
},
"openrouter": {
"default": "nousresearch/llama-3-8b-instruct",
"models": {
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
"Mistral 7B Instruct v0.2 (OpenRouter)": "mistralai/mistral-7b-instruct:free",
"Gemma 7B Instruct (OpenRouter)": "google/gemma-7b-it:free",
}
},
"google": {
"default": "gemini-1.5-flash-latest",
"models": {
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
}
},
"openai": {
"default": "gpt-3.5-turbo",
"models": {
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo",
}
},
# Add other providers here if needed for fallback
}
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str:
if ui_api_key_override:
logger.debug(f"Using UI API key override for {provider}")
return ui_api_key_override.strip()
env_var_name = API_KEYS.get(provider.upper())
if env_var_name:
env_key = os.getenv(env_var_name)
if env_key:
logger.debug(f"Using env var {env_var_name} for {provider}")
return env_key.strip()
# Special case for Hugging Face, HF_TOKEN is common
if provider.lower() == 'huggingface':
hf_token = os.getenv("HF_TOKEN")
if hf_token:
logger.debug(f"Using HF_TOKEN env var for {provider}")
return hf_token.strip()
logger.warning(f"API Key not found for provider '{provider}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.")
return None
def get_available_providers() -> list[str]:
return sorted(list(MODELS_BY_PROVIDER.keys()))
def get_models_for_provider(provider: str) -> list[str]:
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
def get_default_model_for_provider(provider: str) -> str | None:
models_dict = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
default_model_id = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("default")
if default_model_id:
# Find the display name corresponding to the default model ID
for display_name, model_id in models_dict.items():
if model_id == default_model_id:
return display_name
# Fallback: If no default specified or found, return the first model in the sorted list
if models_dict:
return sorted(list(models_dict.keys()))[0]
return None
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
return models.get(display_name)
def generate_stream(provider: str, model_display_name: str, api_key_override: str, messages: list[dict]) -> iter:
provider_lower = provider.lower()
api_key = _get_api_key(provider_lower, api_key_override)
base_url = API_URLS.get(provider.upper())
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
if not api_key:
env_var_name = API_KEYS.get(provider.upper(), 'N/A')
yield f"Error: API Key not found for {provider}. Please set it in the UI override or environment variable '{env_var_name}'."
return
if not base_url:
yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
return
if not model_id:
yield f"Error: Unknown model '{model_display_name}' for provider '{provider}'. Please select a valid model."
return
headers = {}
payload = {}
request_url = base_url
timeout_seconds = 180 # Increased timeout
logger.info(f"Calling {provider}/{model_display_name} (ID: {model_id}) stream...")
try:
if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]:
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {
"model": model_id,
"messages": messages,
"stream": True,
"temperature": 0.7, # Add temperature
"max_tokens": 4096 # Add max_tokens
}
if provider_lower == "openrouter":
headers["HTTP-Referer"] = os.getenv("SPACE_HOST") or "https://github.com/your_username/ai-space-commander" # Use space name
headers["X-Title"] = "Hugging Face Space Commander" # Use project title
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
# Attempt to read error body if available
error_body = response.text
logger.error(f"HTTP Error during stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
while b'\n' in byte_buffer:
line, byte_buffer = byte_buffer.split(b'\n', 1)
decoded_line = line.decode('utf-8', errors='ignore')
if decoded_line.startswith('data: '):
data = decoded_line[6:]
if data == '[DONE]':
byte_buffer = b'' # Clear buffer after DONE
break
try:
event_data = json.loads(data)
if event_data.get("choices") and len(event_data["choices"]) > 0:
delta = event_data["choices"][0].get("delta")
if delta and delta.get("content"):
yield delta["content"]
except json.JSONDecodeError:
# Log warning but continue, partial data might be okay or next line fixes it
logger.warning(f"Failed to decode JSON from stream line: {decoded_line.strip()}")
except Exception as e:
logger.error(f"Error processing stream data: {e}, Data: {decoded_line.strip()}")
# Process any remaining data in the buffer after the loop
if byte_buffer:
remaining_line = byte_buffer.decode('utf-8', errors='ignore').strip()
if remaining_line.startswith('data: '):
data = remaining_line[6:]
if data != '[DONE]':
try:
event_data = json.loads(data)
if event_data.get("choices") and len(event_data["choices"]) > 0:
delta = event_data["choices"][0].get("delta")
if delta and delta.get("content"):
yield delta["content"]
except json.JSONDecodeError:
logger.warning(f"Failed to decode final stream buffer JSON: {remaining_line}")
except Exception as e:
logger.error(f"Error processing final stream buffer data: {e}, Data: {remaining_line}")
elif provider_lower == "google":
system_instruction = None
filtered_messages = []
for msg in messages:
if msg["role"] == "system":
# Google's API takes system instruction separately or expects a specific history format
# Let's extract the system instruction
system_instruction = msg["content"]
else:
# Map roles: 'user' -> 'user', 'assistant' -> 'model'
role = "model" if msg["role"] == "assistant" else msg["role"]
filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]})
# Ensure conversation history alternates roles correctly for Google
# Simple check: if last two roles are same, it's invalid.
for i in range(1, len(filtered_messages)):
if filtered_messages[i]["role"] == filtered_messages[i-1]["role"]:
yield f"Error: Google API requires alternating user/model roles in chat history. Please check prompt or history format."
return # Stop if history format is invalid
payload = {
"contents": filtered_messages,
"safetySettings": [ # Default safety settings to allow helpful but potentially sensitive code/instructions
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
],
"generationConfig": {
"temperature": 0.7,
"maxOutputTokens": 4096 # Google's max_tokens equivalent
}
}
# System instruction is passed separately
if system_instruction:
payload["system_instruction"] = {"parts": [{"text": system_instruction}]}
request_url = f"{base_url}{model_id}:streamGenerateContent"
# API key is passed as a query parameter for Google
request_url = f"{request_url}?key={api_key}"
headers = {"Content-Type": "application/json"} # Content-Type is still application/json
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
error_body = response.text
logger.error(f"HTTP Error during Google stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during Google stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
# Google's streaming can send multiple JSON objects in one chunk, sometimes split by newlines
# Or just single JSON objects. They don't strictly follow the Server-Sent Events 'data:' format.
# We need to find JSON objects in the buffer.
json_decoder = json.JSONDecoder()
while byte_buffer:
try:
# Attempt to decode a JSON object from the start of the buffer
obj, idx = json_decoder.raw_decode(byte_buffer.decode('utf-8', errors='ignore').lstrip()) # lstrip to handle leading whitespace/newlines
# If successful, process the object
byte_buffer = byte_buffer[len(byte_buffer.decode('utf-8', errors='ignore').lstrip()[:idx]).encode('utf-8'):] # Remove the decoded part from the buffer
if obj.get("candidates") and len(obj["candidates"]) > 0:
candidate = obj["candidates"][0]
if candidate.get("content") and candidate["content"].get("parts"):
full_text_chunk = "".join(part.get("text", "") for part in candidate["content"]["parts"])
if full_text_chunk:
yield full_text_chunk
# Check for potential errors in the response object itself
if obj.get("error"):
error_details = obj["error"].get("message", str(obj["error"]))
logger.error(f"Google API returned error in stream data: {error_details}")
yield f"API Error (Google): {error_details}"
return # Stop streaming
except json.JSONDecodeError:
# If raw_decode fails, it means the buffer doesn't contain a complete JSON object at the start.
# Break the inner while loop and wait for more data.
break
except Exception as e:
logger.error(f"Error processing Google stream data object: {e}, Object: {obj}")
# Decide if this is a fatal error or just a bad chunk
# For now, log and continue might be okay for processing subsequent chunks.
# If loop finishes and buffer still has data, log it (incomplete data)
if byte_buffer:
logger.warning(f"Remaining data in Google stream buffer after processing: {byte_buffer.decode('utf-8', errors='ignore')}")
elif provider_lower == "cohere":
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
request_url = f"{base_url}"
chat_history_for_cohere = []
system_prompt_for_cohere = None
current_message_for_cohere = ""
# Cohere requires a specific history format and separates system/preamble
# The last message is the "message", previous are "chat_history"
temp_history = []
for msg in messages:
if msg["role"] == "system":
# If multiple system prompts, concatenate them for preamble
if system_prompt_for_cohere: system_prompt_for_cohere += "\n" + msg["content"]
else: system_prompt_for_cohere = msg["content"]
elif msg["role"] == "user" or msg["role"] == "assistant":
temp_history.append(msg)
if not temp_history:
yield "Error: No user message found for Cohere API call."
return
if temp_history[-1]["role"] != "user":
yield "Error: Last message must be from user for Cohere API call."
return
current_message_for_cohere = temp_history[-1]["content"]
# Map roles: 'user' -> 'user', 'assistant' -> 'chatbot'
chat_history_for_cohere = [{"role": ("chatbot" if m["role"] == "assistant" else m["role"]), "message": m["content"]} for m in temp_history[:-1]]
payload = {
"model": model_id,
"message": current_message_for_cohere,
"stream": True,
"temperature": 0.7,
"max_tokens": 4096 # Add max_tokens
}
if chat_history_for_cohere:
payload["chat_history"] = chat_history_for_cohere
if system_prompt_for_cohere:
payload["preamble"] = system_prompt_for_cohere
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=timeout_seconds)
response.raise_for_status()
byte_buffer = b""
for chunk in response.iter_content(chunk_size=8192):
# Check for potential HTTP errors during streaming
if response.status_code != 200:
error_body = response.text
logger.error(f"HTTP Error during Cohere stream: {response.status_code}, Body: {error_body}")
yield f"API HTTP Error ({response.status_code}) during Cohere stream: {error_body}"
return # Stop streaming on error
byte_buffer += chunk
while b'\n\n' in byte_buffer: # Cohere uses \n\n as event separator
event_chunk, byte_buffer = byte_buffer.split(b'\n\n', 1)
lines = event_chunk.strip().split(b'\n')
event_type = None
event_data = None
for l in lines:
if l.strip() == b"": continue # Skip blank lines within an event
if l.startswith(b"event: "): event_type = l[7:].strip().decode('utf-8', errors='ignore')
elif l.startswith(b"data: "):
try: event_data = json.loads(l[6:].strip().decode('utf-8', errors='ignore'))
except json.JSONDecodeError: logger.warning(f"Cohere: Failed to decode event data JSON: {l[6:].strip()}")
else:
# Log unexpected lines in event chunk
logger.warning(f"Cohere: Unexpected line in event chunk: {l.decode('utf-8', errors='ignore').strip()}")
if event_type == "text-generation" and event_data and "text" in event_data:
yield event_data["text"]
elif event_type == "stream-end":
logger.debug("Cohere stream-end event received.")
byte_buffer = b'' # Clear buffer after stream-end
break # Exit the while loop
elif event_type == "error":
error_msg = event_data.get("message", str(event_data)) if event_data else "Unknown Cohere stream error"
logger.error(f"Cohere stream error event: {error_msg}")
yield f"API Error (Cohere stream): {error_msg}"
return # Stop streaming on error
# Process any remaining data in the buffer after the loop
if byte_buffer:
logger.warning(f"Remaining data in Cohere stream buffer after processing: {byte_buffer.decode('utf-8', errors='ignore')}")
elif provider_lower == "huggingface":
# Hugging Face Inference API often supports streaming for text-generation,
# but chat completion streaming format varies greatly model by model, if supported.
# Standard OpenAI-like streaming is not guaranteed.
# Let's provide a more informative message.
yield f"Error: Direct Hugging Face Inference API streaming for chat models is highly experimental and depends heavily on the specific model's implementation. Standard OpenAI-like streaming is NOT guaranteed. For better compatibility with HF models that support the OpenAI format, consider using the OpenRouter or TogetherAI providers and selecting the HF models listed there."
return
else:
yield f"Error: Unsupported provider '{provider}' for streaming chat."
return
except requests.exceptions.HTTPError as e:
status_code = e.response.status_code if e.response is not None else 'N/A'
error_text = e.response.text if e.response is not None else 'No response text'
logger.error(f"HTTP error during streaming for {provider}/{model_id}: {e}")
yield f"API HTTP Error ({status_code}): {error_text}\nDetails: {e}"
except requests.exceptions.Timeout:
logger.error(f"Request Timeout after {timeout_seconds} seconds for {provider}/{model_id}.")
yield f"API Request Timeout: The request took too long to complete ({timeout_seconds} seconds)."
except requests.exceptions.RequestException as e:
logger.error(f"Request error during streaming for {provider}/{model_id}: {e}")
yield f"API Request Error: Could not connect or receive response from {provider} ({e})"
except Exception as e:
logger.exception(f"Unexpected error during streaming for {provider}/{model_id}:")
yield f"An unexpected error occurred during streaming: {e}"