File size: 7,813 Bytes
9161e19
 
 
 
 
 
 
 
 
7e165c0
9161e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e165c0
 
9161e19
7e165c0
 
9161e19
 
 
7e165c0
 
9161e19
 
 
7e165c0
9161e19
 
 
 
 
7e165c0
 
9161e19
 
 
 
 
 
 
 
 
7e165c0
9161e19
 
 
 
 
 
7e165c0
 
9161e19
 
7e165c0
 
9161e19
7e165c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9161e19
 
 
7e165c0
 
 
9161e19
 
 
7e165c0
9161e19
 
7e165c0
 
9161e19
 
 
7e165c0
 
9161e19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import json
import re
import logging
import time

from model_logic import call_model_stream, MODELS_BY_PROVIDER, get_default_model_display_name_for_provider
from memory_logic import retrieve_memories_semantic, retrieve_rules_semantic
from tools.websearch import search_and_scrape_duckduckgo, scrape_url
from tools.space_builder import create_huggingface_space, update_huggingface_space_file
import prompts
from utils import format_insights_for_prompt

logger = logging.getLogger(__name__)

WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true"
TOOL_DECISION_PROVIDER = os.getenv("TOOL_DECISION_PROVIDER", "groq")
TOOL_DECISION_MODEL_ID = os.getenv("TOOL_DECISION_MODEL", "llama3-8b-8192")
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7))

def decide_on_tool(user_input: str, chat_history_for_prompt: list, initial_insights_ctx_str: str):
    user_input_lower = user_input.lower()

    if "http://" in user_input or "https://" in user_input:
        url_match = re.search(r'(https?://[^\s]+)', user_input)
        if url_match:
            return "scrape_url_and_report", {"url": url_match.group(1)}

    tool_trigger_keywords = ["what is", "how to", "explain", "search for", "build", "create", "make", "update", "modify", "change", "fix"]
    if len(user_input.split()) > 3 or "?" in user_input or any(w in user_input_lower for w in tool_trigger_keywords):
        history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]])
        guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ')
        tool_user_prompt = prompts.get_tool_user_prompt(user_input, history_snippet, guideline_snippet)
        tool_decision_messages = [{"role": "system", "content": prompts.TOOL_SYSTEM_PROMPT}, {"role": "user", "content": tool_user_prompt}]
        tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(TOOL_DECISION_PROVIDER.lower(), {}).get("models", {}).items() if mid == TOOL_DECISION_MODEL_ID), None) or get_default_model_display_name_for_provider(TOOL_DECISION_PROVIDER)
        
        if tool_model_display:
            try:
                tool_resp_raw = "".join(list(call_model_stream(provider=TOOL_DECISION_PROVIDER, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=2048)))
                json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL)
                if json_match_tool:
                    action_data = json.loads(json_match_tool.group(0))
                    action_type = action_data.get("action", "quick_respond")
                    action_input = action_data.get("action_input", {})
                    if not isinstance(action_input, dict):
                        action_input = {}
                    return action_type, action_input
            except Exception as e:
                logger.error(f"Tool decision LLM error: {e}")

    return "quick_respond", {}

def orchestrate_and_respond(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None):
    request_id = os.urandom(4).hex()
    logger.info(f"ORCHESTRATOR [{request_id}] Start. User: '{user_input[:50]}...'")
    history_str_for_prompt = "\n".join([f"{t['role']}: {t['content']}" for t in chat_history_for_prompt])
    
    yield "status", "[Checking guidelines...]"
    initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5)
    initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights)
    
    yield "status", "[Choosing best approach...]"
    action_type, action_input = decide_on_tool(user_input, chat_history_for_prompt, initial_insights_ctx_str)
    logger.info(f"ORCHESTRATOR [{request_id}]: Tool Decision: Action='{action_type}', Input='{action_input}'")
    
    yield "status", f"[Path: {action_type}]"
    final_system_prompt = custom_system_prompt or prompts.DEFAULT_SYSTEM_PROMPT
    context_str = None

    if action_type == "create_huggingface_space":
        yield "status", "[Tool: Creating Space...]"
        params = ["owner", "space_name", "sdk", "markdown_content"]
        if all(p in action_input for p in params):
            result = create_huggingface_space(**action_input)
            context_str = f"Tool Result (Create Space): {result.get('result') or result.get('error', 'Unknown outcome from tool.')}"
        else:
            context_str = "Tool Failed: Missing required parameters for create_huggingface_space. Required: " + ", ".join(params)
    elif action_type == "update_huggingface_space_file":
        yield "status", "[Tool: Updating file...]"
        params = ["owner", "space_name", "file_path", "new_content", "commit_message"]
        if all(p in action_input for p in params):
            result = update_huggingface_space_file(**action_input)
            context_str = f"Tool Result (Update File): {result.get('result') or result.get('error', 'Unknown outcome from tool.')}"
        else:
            context_str = "Tool Failed: Missing required parameters for update_huggingface_space_file. Required: " + ", ".join(params)
    elif action_type == "search_duckduckgo_and_report" and WEB_SEARCH_ENABLED:
        query = action_input.get("search_engine_query")
        if query:
            yield "status", f"[Web: '{query[:60]}'...]"
            results = search_and_scrape_duckduckgo(query, num_results=2)
            context_str = "Web Content:\n" + "\n".join([f"Source {i+1} ({r.get('url','N/A')}):\n{r.get('content', r.get('error', 'N/A'))[:3000]}\n---" for i, r in enumerate(results)])
        else:
            context_str = "Tool Failed: Missing 'search_engine_query' for web search."
    elif action_type == "scrape_url_and_report" and WEB_SEARCH_ENABLED:
        url = action_input.get("url")
        if url:
            yield "status", f"[Web: '{url[:60]}'...]"
            result = scrape_url(url)
            context_str = f"Web Content for {url}:\n{result.get('content', result.get('error', 'No content scraped.'))}"
        else:
            context_str = "Tool Failed: Missing 'url' for scraping."
    elif action_type == "answer_using_conversation_memory":
        yield "status", "[Searching conversation memory...]"
        mems = retrieve_memories_semantic(f"User query: {user_input}\nContext:\n{history_str_for_prompt[-1000:]}", k=2)
        context_str = "Relevant Past Interactions:\n" + "\n".join([f"- User:{m.get('user_input','')}->AI:{m.get('bot_response','')} (Takeaway:{m.get('metrics',{}).get('takeaway','N/A')})" for m in mems]) if mems else "No relevant past interactions found."
    
    final_user_prompt = prompts.get_final_response_prompt(history_str_for_prompt, initial_insights_ctx_str, user_input, context_str)
    final_llm_messages = [{"role": "system", "content": final_system_prompt}, {"role": "user", "content": final_user_prompt}]
    
    streamed_response = ""
    try:
        for chunk in call_model_stream(provider_name, model_display_name, final_llm_messages, ui_api_key_override, max_tokens=4096):
            if isinstance(chunk, str) and chunk.startswith("Error:"):
                streamed_response += f"\n{chunk}\n"; yield "response_chunk", f"\n{chunk}\n"; break
            streamed_response += chunk
            yield "response_chunk", chunk
    except Exception as e:
        streamed_response += f"\n\n(Error: {e})"; yield "response_chunk", f"\n\n(Error: {e})"
    
    final_bot_text = streamed_response.strip() or "(No response)"
    logger.info(f"ORCHESTRATOR [{request_id}]: Finished. Response length: {len(final_bot_text)}")
    yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list}