File size: 14,623 Bytes
6c9ab1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c007c
6c9ab1e
ea898c4
60c007c
6c9ab1e
60c007c
 
6c9ab1e
 
60c007c
6c9ab1e
60c007c
6c9ab1e
60c007c
6c9ab1e
 
 
 
 
60c007c
6c9ab1e
60c007c
6c9ab1e
 
 
60c007c
6c9ab1e
 
 
60c007c
 
6c9ab1e
60c007c
6c9ab1e
 
 
 
 
 
ea898c4
6c9ab1e
 
ea898c4
60c007c
 
 
 
 
 
 
 
 
 
 
ea898c4
6c9ab1e
 
 
 
60c007c
6c9ab1e
60c007c
 
6c9ab1e
60c007c
 
6c9ab1e
 
60c007c
6c9ab1e
 
 
 
 
60c007c
6c9ab1e
 
 
 
60c007c
6c9ab1e
 
 
 
 
60c007c
6c9ab1e
 
 
60c007c
ea898c4
6c9ab1e
 
 
60c007c
6c9ab1e
60c007c
6c9ab1e
 
 
 
 
60c007c
6c9ab1e
 
60c007c
 
ea898c4
60c007c
 
 
6c9ab1e
60c007c
6c9ab1e
 
 
 
 
60c007c
6c9ab1e
 
54137b6
60c007c
ea898c4
60c007c
6c9ab1e
60c007c
 
 
 
 
6c9ab1e
 
ea898c4
6c9ab1e
60c007c
6c9ab1e
 
 
 
 
 
 
60c007c
6c9ab1e
 
 
60c007c
6c9ab1e
 
 
60c007c
6c9ab1e
 
60c007c
6c9ab1e
 
 
60c007c
 
6c9ab1e
 
60c007c
 
6c9ab1e
60c007c
6c9ab1e
 
 
ea898c4
6c9ab1e
60c007c
6c9ab1e
 
60c007c
 
6c9ab1e
 
 
60c007c
6c9ab1e
 
 
60c007c
6c9ab1e
 
60c007c
6c9ab1e
60c007c
 
6c9ab1e
 
 
60c007c
 
6c9ab1e
 
60c007c
6c9ab1e
 
60c007c
6c9ab1e
 
 
ea898c4
6c9ab1e
 
54137b6
6c9ab1e
54137b6
 
 
 
 
 
 
6c9ab1e
 
60c007c
54137b6
 
 
6c9ab1e
54137b6
6c9ab1e
 
60c007c
6c9ab1e
 
 
 
54137b6
6c9ab1e
 
 
60c007c
 
 
 
 
ea898c4
60c007c
6c9ab1e
 
 
 
60c007c
6c9ab1e
 
 
 
 
 
 
 
60c007c
6c9ab1e
 
 
 
60c007c
6c9ab1e
 
 
 
 
 
 
 
60c007c
6c9ab1e
 
 
60c007c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import json
import time
from datetime import datetime
import logging
import re
import threading

try:
    from sentence_transformers import SentenceTransformer
    import faiss
    import numpy as np
except ImportError:
    SentenceTransformer, faiss, np = None, None, None
    logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")

try:
    import sqlite3
except ImportError:
    sqlite3 = None
    logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")

try:
    from datasets import load_dataset, Dataset
except ImportError:
    load_dataset, Dataset = None, None
    logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")

logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
    if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)

STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")

_embedder = None
_dimension = 384
_faiss_memory_index = None
_memory_items_list = []
_faiss_rules_index = None
_rules_items_list = []

_initialized = False
_init_lock = threading.Lock()

def _get_sqlite_connection():
    if not sqlite3: raise ImportError("sqlite3 module is required for SQLite backend.")
    db_dir = os.path.dirname(SQLITE_DB_PATH)
    if db_dir: os.makedirs(db_dir, exist_ok=True)
    return sqlite3.connect(SQLITE_DB_PATH, timeout=10)

def _init_sqlite_tables():
    if STORAGE_BACKEND != "SQLITE" or not sqlite3: return
    try:
        with _get_sqlite_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("CREATE TABLE IF NOT EXISTS memories (id INTEGER PRIMARY KEY, memory_json TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
            cursor.execute("CREATE TABLE IF NOT EXISTS rules (id INTEGER PRIMARY KEY, rule_text TEXT NOT NULL UNIQUE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
            conn.commit()
        logger.info("SQLite tables checked/created.")
    except Exception as e:
        logger.error(f"SQLite table initialization error: {e}", exc_info=True)

def _build_faiss_index(items_list, text_extraction_fn):
    if not _embedder:
        logger.error("Cannot build FAISS index: Embedder not available.")
        return None, []
    
    index = faiss.IndexFlatL2(_dimension)
    if not items_list: return index, []

    texts_to_embed, valid_items = [], []
    for item in items_list:
        try:
            texts_to_embed.append(text_extraction_fn(item))
            valid_items.append(item)
        except (json.JSONDecodeError, TypeError) as e:
            logger.warning(f"Skipping item during FAISS indexing due to processing error: {e}. Item: '{str(item)[:100]}...'")

    if not texts_to_embed:
        logger.warning("No valid items to embed for FAISS index after filtering.")
        return index, []

    try:
        embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
        embeddings_np = np.array(embeddings, dtype=np.float32)
        if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed):
            index.add(embeddings_np)
            logger.info(f"FAISS index built with {index.ntotal} / {len(items_list)} items.")
            return index, valid_items
        else:
            logger.error(f"FAISS build failed: Embeddings shape error.")
            return faiss.IndexFlatL2(_dimension), []
    except Exception as e:
        logger.error(f"Error building FAISS index: {e}", exc_info=True)
        return faiss.IndexFlatL2(_dimension), []

def initialize_memory_system():
    global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
    
    with _init_lock:
        if _initialized: return

        logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
        init_start_time = time.time()

        if not all([SentenceTransformer, faiss, np]):
            logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
            return
        
        if not _embedder:
            try:
                logger.info("Loading SentenceTransformer model...")
                _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
                _dimension = _embedder.get_sentence_embedding_dimension() or 384
            except Exception as e:
                logger.critical(f"FATAL: Could not load SentenceTransformer model. Semantic search disabled. Error: {e}", exc_info=True)
                return

        if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()

        raw_mems = []
        if STORAGE_BACKEND == "SQLITE":
            try: raw_mems = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
            except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
        elif STORAGE_BACKEND == "HF_DATASET":
            try:
                dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
                if "train" in dataset and "memory_json" in dataset["train"].column_names:
                    raw_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
            except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
        
        mem_index, valid_mems = _build_faiss_index(raw_mems, lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}")
        _faiss_memory_index = mem_index
        _memory_items_list = valid_mems
        logger.info(f"Loaded and indexed {len(_memory_items_list)} memories.")

        raw_rules = []
        if STORAGE_BACKEND == "SQLITE":
            try: raw_rules = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
            except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
        elif STORAGE_BACKEND == "HF_DATASET":
            try:
                dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
                if "train" in dataset and "rule_text" in dataset["train"].column_names:
                    raw_rules = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
            except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)

        rule_index, valid_rules = _build_faiss_index(raw_rules, lambda r: r)
        _faiss_rules_index = rule_index
        _rules_items_list = valid_rules
        logger.info(f"Loaded and indexed {len(_rules_items_list)} rules.")
        
        if _embedder and _faiss_memory_index is not None and _faiss_rules_index is not None:
            _initialized = True
            logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
        else:
            logger.error("Memory system initialization failed. Core components are not ready.")

def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
    global _memory_items_list, _faiss_memory_index
    if not _initialized: initialize_memory_system()
    if not _embedder or _faiss_memory_index is None: return False, "Memory system not ready."

    memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
    memory_json_str = json.dumps(memory_obj)
    text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
    
    try:
        embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
        _faiss_memory_index.add(np.array(embedding, dtype=np.float32))
        _memory_items_list.append(memory_json_str)
        
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
        
        return True, "Memory added."
    except Exception as e:
        logger.error(f"Error adding memory entry: {e}", exc_info=True)
        return False, f"Error: {e}"

def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
    if not _initialized: initialize_memory_system()
    if not _faiss_memory_index or _faiss_memory_index.ntotal == 0: return []
    
    try:
        query_embedding = _embedder.encode([query], convert_to_tensor=False)
        distances, indices = _faiss_memory_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_memory_index.ntotal))
        return [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
    except Exception as e:
        logger.error(f"Error retrieving memories: {e}", exc_info=True)
        return []

def add_rule_entry(rule_text: str) -> tuple[bool, str]:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()
    if not _embedder or _faiss_rules_index is None: return False, "Rule system not ready."

    rule_text = rule_text.strip()
    if not rule_text or rule_text in _rules_items_list: return False, "duplicate or invalid"
    if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I): return False, "Invalid format."

    try:
        embedding = _embedder.encode([rule_text], convert_to_tensor=False)
        _faiss_rules_index.add(np.array(embedding, dtype=np.float32))
        _rules_items_list.append(rule_text)

        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        return True, "Rule added."
    except Exception as e:
        logger.error(f"Error adding rule: {e}", exc_info=True)
        return False, f"Error: {e}"

def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
    if not _initialized: initialize_memory_system()
    if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
    
    try:
        query_embedding = _embedder.encode([query], convert_to_tensor=False)
        distances, indices = _faiss_rules_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_rules_index.ntotal))
        return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
    except Exception as e:
        logger.error(f"Error retrieving rules: {e}", exc_info=True)
        return []

def remove_rule_entry(rule_text_to_delete: str) -> bool:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()
    rule_text_to_delete = rule_text_to_delete.strip()
    
    try:
        idx_to_remove = _rules_items_list.index(rule_text_to_delete)
    except ValueError:
        return False

    try:
        _faiss_rules_index.remove_ids(np.array([idx_to_remove], dtype='int64'))
        del _rules_items_list[idx_to_remove]
        
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            # After removing, we need to push the new state of the list.
            # Important: This can be slow if the dataset is large.
            Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        
        return True
    except Exception as e:
        logger.error(f"Error removing rule: {e}", exc_info=True)
        return False

def get_all_rules_cached() -> list[str]:
    if not _initialized: initialize_memory_system()
    return sorted(list(_rules_items_list))

def get_all_memories_cached() -> list[dict]:
    if not _initialized: initialize_memory_system()
    valid_mems = []
    for m_str in _memory_items_list:
        try:
            valid_mems.append(json.loads(m_str))
        except json.JSONDecodeError:
            continue
    return valid_mems

def clear_all_memory_data_backend() -> bool:
    global _memory_items_list, _faiss_memory_index
    if not _initialized: initialize_memory_system()
    _memory_items_list.clear()
    if _faiss_memory_index: _faiss_memory_index.reset()
    try:
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
        return True
    except Exception as e:
        logger.error(f"Error clearing memory data: {e}"); return False

def clear_all_rules_data_backend() -> bool:
    global _rules_items_list, _faiss_rules_index
    if not _initialized: initialize_memory_system()
    _rules_items_list.clear()
    if _faiss_rules_index: _faiss_rules_index.reset()
    try:
        if STORAGE_BACKEND == "SQLITE":
            with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
        elif STORAGE_BACKEND == "HF_DATASET":
            Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
        return True
    except Exception as e:
        logger.error(f"Error clearing rules data: {e}"); return False

def save_faiss_indices_to_disk():
    if not _initialized or not faiss: return
    faiss_dir = "app_data/faiss_indices"
    os.makedirs(faiss_dir, exist_ok=True)
    if _faiss_memory_index: faiss.write_index(_faiss_memory_index, os.path.join(faiss_dir, "memory_index.faiss"))
    if _faiss_rules_index: faiss.write_index(_faiss_rules_index, os.path.join(faiss_dir, "rules_index.faiss"))