Spaces:
Runtime error
Runtime error
File size: 14,623 Bytes
6c9ab1e 60c007c 6c9ab1e ea898c4 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e ea898c4 6c9ab1e ea898c4 60c007c ea898c4 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c ea898c4 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c ea898c4 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 54137b6 60c007c ea898c4 60c007c 6c9ab1e 60c007c 6c9ab1e ea898c4 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e ea898c4 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e ea898c4 6c9ab1e 54137b6 6c9ab1e 54137b6 6c9ab1e 60c007c 54137b6 6c9ab1e 54137b6 6c9ab1e 60c007c 6c9ab1e 54137b6 6c9ab1e 60c007c ea898c4 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c 6c9ab1e 60c007c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
_embedder = None
_dimension = 384
_faiss_memory_index = None
_memory_items_list = []
_faiss_rules_index = None
_rules_items_list = []
_initialized = False
_init_lock = threading.Lock()
def _get_sqlite_connection():
if not sqlite3: raise ImportError("sqlite3 module is required for SQLite backend.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir: os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3: return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS memories (id INTEGER PRIMARY KEY, memory_json TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
cursor.execute("CREATE TABLE IF NOT EXISTS rules (id INTEGER PRIMARY KEY, rule_text TEXT NOT NULL UNIQUE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
conn.commit()
logger.info("SQLite tables checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
def _build_faiss_index(items_list, text_extraction_fn):
if not _embedder:
logger.error("Cannot build FAISS index: Embedder not available.")
return None, []
index = faiss.IndexFlatL2(_dimension)
if not items_list: return index, []
texts_to_embed, valid_items = [], []
for item in items_list:
try:
texts_to_embed.append(text_extraction_fn(item))
valid_items.append(item)
except (json.JSONDecodeError, TypeError) as e:
logger.warning(f"Skipping item during FAISS indexing due to processing error: {e}. Item: '{str(item)[:100]}...'")
if not texts_to_embed:
logger.warning("No valid items to embed for FAISS index after filtering.")
return index, []
try:
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed):
index.add(embeddings_np)
logger.info(f"FAISS index built with {index.ntotal} / {len(items_list)} items.")
return index, valid_items
else:
logger.error(f"FAISS build failed: Embeddings shape error.")
return faiss.IndexFlatL2(_dimension), []
except Exception as e:
logger.error(f"Error building FAISS index: {e}", exc_info=True)
return faiss.IndexFlatL2(_dimension), []
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized: return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not all([SentenceTransformer, faiss, np]):
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
except Exception as e:
logger.critical(f"FATAL: Could not load SentenceTransformer model. Semantic search disabled. Error: {e}", exc_info=True)
return
if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()
raw_mems = []
if STORAGE_BACKEND == "SQLITE":
try: raw_mems = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET":
try:
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
raw_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
mem_index, valid_mems = _build_faiss_index(raw_mems, lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}")
_faiss_memory_index = mem_index
_memory_items_list = valid_mems
logger.info(f"Loaded and indexed {len(_memory_items_list)} memories.")
raw_rules = []
if STORAGE_BACKEND == "SQLITE":
try: raw_rules = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET":
try:
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
raw_rules = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)
rule_index, valid_rules = _build_faiss_index(raw_rules, lambda r: r)
_faiss_rules_index = rule_index
_rules_items_list = valid_rules
logger.info(f"Loaded and indexed {len(_rules_items_list)} rules.")
if _embedder and _faiss_memory_index is not None and _faiss_rules_index is not None:
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
else:
logger.error("Memory system initialization failed. Core components are not ready.")
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or _faiss_memory_index is None: return False, "Memory system not ready."
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
_faiss_memory_index.add(np.array(embedding, dtype=np.float32))
_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
return True, "Memory added."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
if not _initialized: initialize_memory_system()
if not _faiss_memory_index or _faiss_memory_index.ntotal == 0: return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
distances, indices = _faiss_memory_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_memory_index.ntotal))
return [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
except Exception as e:
logger.error(f"Error retrieving memories: {e}", exc_info=True)
return []
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or _faiss_rules_index is None: return False, "Rule system not ready."
rule_text = rule_text.strip()
if not rule_text or rule_text in _rules_items_list: return False, "duplicate or invalid"
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I): return False, "Invalid format."
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
_faiss_rules_index.add(np.array(embedding, dtype=np.float32))
_rules_items_list.append(rule_text)
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True, "Rule added."
except Exception as e:
logger.error(f"Error adding rule: {e}", exc_info=True)
return False, f"Error: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
if not _initialized: initialize_memory_system()
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
distances, indices = _faiss_rules_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_rules_index.ntotal))
return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
except Exception as e:
logger.error(f"Error retrieving rules: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
rule_text_to_delete = rule_text_to_delete.strip()
try:
idx_to_remove = _rules_items_list.index(rule_text_to_delete)
except ValueError:
return False
try:
_faiss_rules_index.remove_ids(np.array([idx_to_remove], dtype='int64'))
del _rules_items_list[idx_to_remove]
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
# After removing, we need to push the new state of the list.
# Important: This can be slow if the dataset is large.
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True
except Exception as e:
logger.error(f"Error removing rule: {e}", exc_info=True)
return False
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return sorted(list(_rules_items_list))
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
valid_mems = []
for m_str in _memory_items_list:
try:
valid_mems.append(json.loads(m_str))
except json.JSONDecodeError:
continue
return valid_mems
def clear_all_memory_data_backend() -> bool:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
_memory_items_list.clear()
if _faiss_memory_index: _faiss_memory_index.reset()
try:
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
return True
except Exception as e:
logger.error(f"Error clearing memory data: {e}"); return False
def clear_all_rules_data_backend() -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
_rules_items_list.clear()
if _faiss_rules_index: _faiss_rules_index.reset()
try:
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True
except Exception as e:
logger.error(f"Error clearing rules data: {e}"); return False
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = "app_data/faiss_indices"
os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index: faiss.write_index(_faiss_memory_index, os.path.join(faiss_dir, "memory_index.faiss"))
if _faiss_rules_index: faiss.write_index(_faiss_rules_index, os.path.join(faiss_dir, "rules_index.faiss")) |