Spaces:
Runtime error
Runtime error
File size: 9,875 Bytes
9161e19 c79b016 c351654 9161e19 bd380de 9161e19 7e165c0 9161e19 db2c3fd 7e165c0 9161e19 7e165c0 9161e19 7e165c0 9161e19 db2c3fd 9161e19 7e165c0 9161e19 7e165c0 9161e19 c79b016 7e165c0 9161e19 7e165c0 c351654 7e165c0 c351654 750febc c351654 c79b016 c351654 c79b016 c351654 db2c3fd c79b016 7e165c0 c79b016 7e165c0 c79b016 7e165c0 c79b016 29e5d5a c79b016 7e165c0 9161e19 c79b016 7e165c0 9161e19 7e165c0 9161e19 7e165c0 9161e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import json
import re
import logging
import time
from datetime import datetime
from huggingface_hub import whoami
from model_logic import call_model_stream, MODELS_BY_PROVIDER, get_default_model_display_name_for_provider
from memory_logic import retrieve_memories_semantic, retrieve_rules_semantic
from tools.websearch import search_and_scrape_duckduckgo, scrape_url
from tools.space_builder import create_huggingface_space, update_huggingface_space_file, list_huggingface_space_files, get_huggingface_space_file_content
import prompts
from utils import format_insights_for_prompt
logger = logging.getLogger(__name__)
WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true"
TOOL_DECISION_PROVIDER = os.getenv("TOOL_DECISION_PROVIDER", "groq")
TOOL_DECISION_MODEL_ID = os.getenv("TOOL_DECISION_MODEL", "llama3-8b-8192")
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7))
def decide_on_tool(user_input: str, chat_history_for_prompt: list, initial_insights_ctx_str: str):
user_input_lower = user_input.lower()
if "http://" in user_input or "https://" in user_input:
url_match = re.search(r'(https?://[^\s]+)', user_input)
if url_match:
return "scrape_url_and_report", {"url": url_match.group(1)}
tool_trigger_keywords = ["search", "build", "create", "make", "update", "modify", "change", "fix", "list", "show", "files", "get", "read", "edit"]
if len(user_input.split()) > 3 or "?" in user_input or any(w in user_input_lower for w in tool_trigger_keywords):
history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]])
guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ')
tool_user_prompt = prompts.get_tool_user_prompt(user_input, history_snippet, guideline_snippet)
tool_decision_messages = [{"role": "system", "content": prompts.TOOL_SYSTEM_PROMPT}, {"role": "user", "content": tool_user_prompt}]
tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(TOOL_DECISION_PROVIDER.lower(), {}).get("models", {}).items() if mid == TOOL_DECISION_MODEL_ID), None) or get_default_model_display_name_for_provider(TOOL_DECISION_PROVIDER)
if tool_model_display:
try:
tool_resp_raw = "".join(list(call_model_stream(provider=TOOL_DECISION_PROVIDER, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=2048)))
json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL)
if json_match_tool:
action_data = json.loads(json_match_tool.group(0))
return action_data.get("action", "quick_respond"), action_data.get("action_input", {})
except Exception as e:
logger.error(f"Tool decision LLM error: {e}")
return "quick_respond", {}
def orchestrate_and_respond(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None):
request_id = os.urandom(4).hex()
logger.info(f"ORCHESTRATOR [{request_id}] Start. User: '{user_input[:50]}...'")
history_str_for_prompt = "\n".join([f"{t['role']}: {t['content']}" for t in chat_history_for_prompt])
yield "status", "[Checking guidelines...]"
initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5)
initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights)
yield "status", "[Choosing best approach...]"
action_type, action_input = decide_on_tool(user_input, chat_history_for_prompt, initial_insights_ctx_str)
logger.info(f"ORCHESTRATOR [{request_id}]: Tool Decision: Action='{action_type}', Input='{action_input}'")
yield "status", f"[Path: {action_type}]"
current_time_str = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S UTC")
base_system_prompt = custom_system_prompt or prompts.DEFAULT_SYSTEM_PROMPT
final_system_prompt = base_system_prompt.format(current_date_time=current_time_str)
context_str = None
if action_type == "create_huggingface_space":
params = ["space_name", "sdk", "description"]
if all(p in action_input for p in params):
try:
hf_token = os.getenv("HF_TOKEN")
if not hf_token: raise ValueError("Hugging Face token (HF_TOKEN) not found.")
yield "status", "[Tool: Verifying user identity...]"
user_info = whoami(token=hf_token)
owner = user_info.get("name")
if not owner: raise ValueError("Could not determine owner from HF token.")
action_input["owner"] = owner
yield "status", "[Tool: Generating space content...]"
space_gen_messages = [
{"role": "system", "content": prompts.SPACE_GENERATION_SYSTEM_PROMPT},
{"role": "user", "content": prompts.get_space_generation_user_prompt(**action_input)}
]
markdown_content = "".join(list(call_model_stream(provider_name, model_display_name, space_gen_messages, ui_api_key_override, 0.1, 4096)))
yield "status", "[Tool: Creating Space...]"
result = create_huggingface_space(owner=owner, space_name=action_input["space_name"], sdk=action_input["sdk"], markdown_content=markdown_content.strip())
context_str = f"Tool Result (Create Space): {result.get('result') or result.get('error', 'Unknown outcome')}"
final_system_prompt += " The space building tool has completed. Inform the user about the result, providing any links or key information from the tool's output."
except Exception as e:
context_str = f"Tool Failed: An error occurred during space creation process - {e}"
else:
context_str = "Tool Failed: Missing parameters for create_huggingface_space. Required: " + ", ".join(params)
elif action_type in ["list_huggingface_space_files", "get_huggingface_space_file_content", "update_huggingface_space_file"]:
tool_map = {
"list_huggingface_space_files": (list_huggingface_space_files, ["owner", "space_name"], "Listing files"),
"get_huggingface_space_file_content": (get_huggingface_space_file_content, ["owner", "space_name", "file_path"], "Reading file content"),
"update_huggingface_space_file": (update_huggingface_space_file, ["owner", "space_name", "file_path", "new_content", "commit_message"], "Updating file")
}
tool_func, params, status_msg = tool_map[action_type]
if all(p in action_input for p in params):
yield "status", f"[Tool: {status_msg}...]"
result = tool_func(**action_input)
context_str = f"Tool Result ({action_type}): {result}"
final_system_prompt += " A file operation tool has completed. Inform the user about the result, presenting the data clearly."
else:
context_str = f"Tool Failed: Missing parameters for {action_type}. Required: " + ", ".join(params)
elif action_type == "search_duckduckgo_and_report" and WEB_SEARCH_ENABLED:
query = action_input.get("search_engine_query")
if query:
yield "status", f"[Web: '{query[:60]}'...]"
results = search_and_scrape_duckduckgo(query, num_results=2)
context_str = "Web Content:\n" + "\n".join([f"Source {i+1} ({r.get('url','N/A')}):\n{r.get('content', r.get('error', 'N/A'))[:3000]}\n---" for i, r in enumerate(results)])
final_system_prompt += " Generate a report/answer from the provided web content, history, & guidelines. Cite URLs as [Source X]."
elif action_type == "scrape_url_and_report" and WEB_SEARCH_ENABLED:
url = action_input.get("url")
if url:
yield "status", f"[Web: '{url[:60]}'...]"
result = scrape_url(url)
context_str = f"Web Content for {url}:\n{result.get('content', result.get('error', 'No content scraped.'))}"
final_system_prompt += " Summarize or answer questions based on the scraped web page content."
elif action_type == "answer_using_conversation_memory":
yield "status", "[Searching conversation memory...]"
mems = retrieve_memories_semantic(f"User query: {user_input}\nContext:\n{history_str_for_prompt[-1000:]}", k=2)
context_str = "Relevant Past Interactions:\n" + "\n".join([f"- User:{m.get('user_input','')}->AI:{m.get('bot_response','')} (Takeaway:{m.get('metrics',{}).get('takeaway','N/A')})" for m in mems]) if mems else "No relevant past interactions found."
final_system_prompt += " Respond using the provided Memory Context, your general knowledge, and the conversation history."
final_user_prompt = prompts.get_final_response_prompt(history_str_for_prompt, initial_insights_ctx_str, user_input, context_str)
final_llm_messages = [{"role": "system", "content": final_system_prompt}, {"role": "user", "content": final_user_prompt}]
streamed_response = ""
try:
for chunk in call_model_stream(provider_name, model_display_name, final_llm_messages, ui_api_key_override, max_tokens=4096):
streamed_response += chunk
yield "response_chunk", chunk
except Exception as e:
streamed_response += f"\n\n(Error: {e})"; yield "response_chunk", f"\n\n(Error: {e})"
final_bot_text = streamed_response.strip() or "(No response)"
logger.info(f"ORCHESTRATOR [{request_id}]: Finished. Response length: {len(final_bot_text)}")
yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list} |