File size: 4,267 Bytes
081e43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import json
import re
import logging

from memory_logic import add_rule_entry, add_memory_entry

logger = logging.getLogger(__name__)

def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
    if not retrieved_insights_list: return "No specific guiding principles or learned insights retrieved.", []
    parsed = []
    for text in retrieved_insights_list:
        match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
        if match: parsed.append({"type": match.group(1).upper().replace(" ", "_"), "score": match.group(2), "text": match.group(3).strip(), "original": text.strip()})
        else: parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
    parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
    grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
    for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
    sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
    return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed

def load_rules_from_file(filepath: str | None, progress_callback=None):
    if not filepath or not os.path.exists(filepath): return 0, 0, 0
    added, skipped, errors = 0, 0, 0
    with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
    if not content.strip(): return 0, 0, 0
    
    potential_rules = []
    if filepath.lower().endswith(".txt"):
        potential_rules = content.split("\n\n---\n\n")
        if len(potential_rules) == 1 and "\n" in content: potential_rules = content.splitlines()
    elif filepath.lower().endswith(".jsonl"):
        for line in content.splitlines():
            if line.strip():
                try: potential_rules.append(json.loads(line))
                except json.JSONDecodeError: errors += 1
    
    valid_rules = [r.strip() for r in potential_rules if isinstance(r, str) and r.strip()]
    total = len(valid_rules)
    if not total: return 0, 0, errors

    for idx, rule_text in enumerate(valid_rules):
        success, status_msg = add_rule_entry(rule_text)
        if success: added += 1
        elif status_msg == "duplicate": skipped += 1
        else: errors += 1
        if progress_callback: progress_callback((idx + 1) / total, f"Processed {idx+1}/{total} rules...")
    
    logger.info(f"Loaded rules from {filepath}: Added {added}, Skipped {skipped}, Errors {errors}.")
    return added, skipped, errors

def load_memories_from_file(filepath: str | None, progress_callback=None):
    if not filepath or not os.path.exists(filepath): return 0, 0, 0
    added, format_err, save_err = 0, 0, 0
    with open(filepath, 'r', encoding='utf-8') as f: content = f.read()
    if not content.strip(): return 0, 0, 0
    
    mem_objects = []
    if filepath.lower().endswith(".json"):
        try:
            data = json.loads(content)
            mem_objects = data if isinstance(data, list) else [data]
        except json.JSONDecodeError: format_err = 1
    elif filepath.lower().endswith(".jsonl"):
        for line in content.splitlines():
            if line.strip():
                try: mem_objects.append(json.loads(line))
                except json.JSONDecodeError: format_err += 1

    total = len(mem_objects)
    if not total: return 0, format_err, 0

    for idx, mem in enumerate(mem_objects):
        if isinstance(mem, dict) and all(k in mem for k in ["user_input", "bot_response", "metrics"]):
            success, _ = add_memory_entry(mem["user_input"], mem["metrics"], mem["bot_response"])
            if success: added += 1
            else: save_err += 1
        else: format_err += 1
        if progress_callback: progress_callback((idx + 1) / total, f"Processed {idx+1}/{total} memories...")
        
    logger.info(f"Loaded memories from {filepath}: Added {added}, Format Errors {format_err}, Save Errors {save_err}.")
    return added, format_err, save_err