Spaces:
Runtime error
Runtime error
import os | |
import json | |
import re | |
import logging | |
import time | |
from model_logic import call_model_stream, MODELS_BY_PROVIDER, get_default_model_display_name_for_provider | |
from memory_logic import retrieve_memories_semantic, retrieve_rules_semantic | |
from tools.websearch import search_and_scrape_duckduckgo, scrape_url | |
import prompts | |
from utils import format_insights_for_prompt | |
logger = logging.getLogger(__name__) | |
WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true" | |
TOOL_DECISION_PROVIDER = os.getenv("TOOL_DECISION_PROVIDER", "groq") | |
TOOL_DECISION_MODEL_ID = os.getenv("TOOL_DECISION_MODEL", "llama3-8b-8192") | |
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7)) | |
def decide_on_tool(user_input: str, chat_history_for_prompt: list, initial_insights_ctx_str: str): | |
user_input_lower = user_input.lower() | |
if "http://" in user_input or "https://" in user_input: | |
url_match = re.search(r'(https?://[^\s]+)', user_input) | |
if url_match: return "scrape_url_and_report", {"url": url_match.group(1)} | |
if len(user_input.split()) <= 3 and any(kw in user_input_lower for kw in ["hello", "hi", "thanks", "ok", "bye"]) and not "?" in user_input: | |
return "quick_respond", {} | |
if len(user_input.split()) > 3 or "?" in user_input or any(w in user_input_lower for w in ["what is", "how to", "explain", "search for"]): | |
history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]]) | |
guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ') | |
tool_user_prompt = prompts.get_tool_user_prompt(user_input, history_snippet, guideline_snippet) | |
tool_decision_messages = [{"role":"system", "content": prompts.TOOL_SYSTEM_PROMPT}, {"role":"user", "content": tool_user_prompt}] | |
tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(TOOL_DECISION_PROVIDER.lower(), {}).get("models", {}).items() if mid == TOOL_DECISION_MODEL_ID), None) | |
if not tool_model_display: tool_model_display = get_default_model_display_name_for_provider(TOOL_DECISION_PROVIDER) | |
if tool_model_display: | |
try: | |
tool_resp_raw = "".join(list(call_model_stream(provider=TOOL_DECISION_PROVIDER, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=150))) | |
json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL) | |
if json_match_tool: | |
action_data = json.loads(json_match_tool.group(0)) | |
action_type = action_data.get("action", "quick_respond") | |
action_input = action_data.get("action_input", {}) | |
if not isinstance(action_input, dict): action_input = {} | |
return action_type, action_input | |
except Exception as e: | |
logger.error(f"Tool decision LLM error: {e}") | |
return "quick_respond", {} | |
def orchestrate_and_respond(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None): | |
process_start_time = time.time() | |
request_id = os.urandom(4).hex() | |
logger.info(f"ORCHESTRATOR [{request_id}] Start. User: '{user_input[:50]}...'") | |
history_str_for_prompt = "\n".join([f"{('User' if t['role'] == 'user' else 'AI')}: {t['content']}" for t in chat_history_for_prompt[-(MAX_HISTORY_TURNS * 2):]]) | |
yield "status", "[Checking guidelines...]" | |
initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5) | |
initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights) | |
yield "status", "[Choosing best approach...]" | |
action_type, action_input_dict = decide_on_tool(user_input, chat_history_for_prompt, initial_insights_ctx_str) | |
logger.info(f"ORCHESTRATOR [{request_id}]: Tool Decision: Action='{action_type}', Input='{action_input_dict}'") | |
yield "status", f"[Path: {action_type}]" | |
final_system_prompt_str = custom_system_prompt or prompts.DEFAULT_SYSTEM_PROMPT | |
context_str, final_user_prompt_str = None, "" | |
if action_type == "answer_using_conversation_memory": | |
yield "status", "[Searching conversation memory...]" | |
mems = retrieve_memories_semantic(f"User query: {user_input}\nContext:\n{history_str_for_prompt[-1000:]}", k=2) | |
context_str = "Relevant Past Interactions:\n" + "\n".join([f"- User:{m.get('user_input','')}->AI:{m.get('bot_response','')} (Takeaway:{m.get('metrics',{}).get('takeaway','N/A')})" for m in mems]) if mems else "No relevant past interactions found." | |
final_system_prompt_str += " Respond using Memory Context, guidelines, & history." | |
elif WEB_SEARCH_ENABLED and action_type in ["search_duckduckgo_and_report", "scrape_url_and_report"]: | |
query_or_url = action_input_dict.get("search_engine_query") or action_input_dict.get("url") | |
if query_or_url: | |
yield "status", f"[Web: '{query_or_url[:60]}'...]" | |
web_results = [] | |
try: | |
if action_type == "search_duckduckgo_and_report": web_results = search_and_scrape_duckduckgo(query_or_url, num_results=2) | |
elif action_type == "scrape_url_and_report": web_results = [scrape_url(query_or_url)] | |
except Exception as e: web_results = [{"url": query_or_url, "error": str(e)}] | |
context_str = "Web Content:\n" + "\n".join([f"Source {i+1}:\nURL:{r.get('url','N/A')}\nTitle:{r.get('title','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:3500]}\n---" for i,r in enumerate(web_results)]) if web_results else f"No results from {action_type} for '{query_or_url}'." | |
yield "status", "[Synthesizing web report...]" | |
final_system_prompt_str += " Generate report/answer from web content, history, & guidelines. Cite URLs as [Source X]." | |
else: # quick_respond or fallback | |
final_system_prompt_str += " Respond directly using guidelines & history." | |
final_user_prompt_str = prompts.get_final_response_prompt(history_str_for_prompt, initial_insights_ctx_str, user_input, context_str) | |
final_llm_messages = [{"role": "system", "content": final_system_prompt_str}, {"role": "user", "content": final_user_prompt_str}] | |
streamed_response = "" | |
try: | |
for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=final_llm_messages, api_key_override=ui_api_key_override, temperature=0.6, max_tokens=2500): | |
if isinstance(chunk, str) and chunk.startswith("Error:"): | |
streamed_response += f"\n{chunk}\n"; yield "response_chunk", f"\n{chunk}\n"; break | |
streamed_response += chunk; yield "response_chunk", chunk | |
except Exception as e: | |
streamed_response += f"\n\n(Error: {e})"; yield "response_chunk", f"\n\n(Error: {e})" | |
final_bot_text = streamed_response.strip() or "(No response or error.)" | |
logger.info(f"ORCHESTRATOR [{request_id}]: Finished. Total: {time.time() - process_start_time:.2f}s. Resp len: {len(final_bot_text)}") | |
yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list} |