Spaces:
Runtime error
Runtime error
import os | |
import json | |
import time | |
from datetime import datetime | |
import logging | |
import re | |
import threading | |
try: | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
except ImportError: | |
SentenceTransformer, faiss, np = None, None, None | |
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.") | |
try: | |
import sqlite3 | |
except ImportError: | |
sqlite3 = None | |
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.") | |
try: | |
from datasets import load_dataset, Dataset | |
except ImportError: | |
load_dataset, Dataset = None, None | |
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.") | |
logger = logging.getLogger(__name__) | |
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]: | |
if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING) | |
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() | |
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") | |
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") | |
_embedder = None | |
_dimension = 384 | |
_faiss_memory_index = None | |
_memory_items_list = [] | |
_faiss_rules_index = None | |
_rules_items_list = [] | |
_initialized = False | |
_init_lock = threading.Lock() | |
def _get_sqlite_connection(): | |
if not sqlite3: raise ImportError("sqlite3 module is required for SQLite backend.") | |
db_dir = os.path.dirname(SQLITE_DB_PATH) | |
if db_dir: os.makedirs(db_dir, exist_ok=True) | |
return sqlite3.connect(SQLITE_DB_PATH, timeout=10) | |
def _init_sqlite_tables(): | |
if STORAGE_BACKEND != "SQLITE" or not sqlite3: return | |
try: | |
with _get_sqlite_connection() as conn: | |
cursor = conn.cursor() | |
cursor.execute("CREATE TABLE IF NOT EXISTS memories (id INTEGER PRIMARY KEY, memory_json TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)") | |
cursor.execute("CREATE TABLE IF NOT EXISTS rules (id INTEGER PRIMARY KEY, rule_text TEXT NOT NULL UNIQUE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)") | |
conn.commit() | |
logger.info("SQLite tables checked/created.") | |
except Exception as e: | |
logger.error(f"SQLite table initialization error: {e}", exc_info=True) | |
def _build_faiss_index(items_list, text_extraction_fn): | |
if not _embedder: | |
logger.error("Cannot build FAISS index: Embedder not available.") | |
return None, [] | |
index = faiss.IndexFlatL2(_dimension) | |
if not items_list: return index, [] | |
texts_to_embed, valid_items = [], [] | |
for item in items_list: | |
try: | |
texts_to_embed.append(text_extraction_fn(item)) | |
valid_items.append(item) | |
except (json.JSONDecodeError, TypeError) as e: | |
logger.warning(f"Skipping item during FAISS indexing due to processing error: {e}. Item: '{str(item)[:100]}...'") | |
if not texts_to_embed: | |
logger.warning("No valid items to embed for FAISS index after filtering.") | |
return index, [] | |
try: | |
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False) | |
embeddings_np = np.array(embeddings, dtype=np.float32) | |
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed): | |
index.add(embeddings_np) | |
logger.info(f"FAISS index built with {index.ntotal} / {len(items_list)} items.") | |
return index, valid_items | |
else: | |
logger.error(f"FAISS build failed: Embeddings shape error.") | |
return faiss.IndexFlatL2(_dimension), [] | |
except Exception as e: | |
logger.error(f"Error building FAISS index: {e}", exc_info=True) | |
return faiss.IndexFlatL2(_dimension), [] | |
def initialize_memory_system(): | |
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list | |
with _init_lock: | |
if _initialized: return | |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}") | |
init_start_time = time.time() | |
if not all([SentenceTransformer, faiss, np]): | |
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.") | |
return | |
if not _embedder: | |
try: | |
logger.info("Loading SentenceTransformer model...") | |
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache") | |
_dimension = _embedder.get_sentence_embedding_dimension() or 384 | |
except Exception as e: | |
logger.critical(f"FATAL: Could not load SentenceTransformer model. Semantic search disabled. Error: {e}", exc_info=True) | |
return | |
if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables() | |
raw_mems = [] | |
if STORAGE_BACKEND == "SQLITE": | |
try: raw_mems = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")] | |
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}") | |
elif STORAGE_BACKEND == "HF_DATASET": | |
try: | |
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) | |
if "train" in dataset and "memory_json" in dataset["train"].column_names: | |
raw_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()] | |
except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True) | |
mem_index, valid_mems = _build_faiss_index(raw_mems, lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}") | |
_faiss_memory_index = mem_index | |
_memory_items_list = valid_mems | |
logger.info(f"Loaded and indexed {len(_memory_items_list)} memories.") | |
raw_rules = [] | |
if STORAGE_BACKEND == "SQLITE": | |
try: raw_rules = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")] | |
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}") | |
elif STORAGE_BACKEND == "HF_DATASET": | |
try: | |
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) | |
if "train" in dataset and "rule_text" in dataset["train"].column_names: | |
raw_rules = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()] | |
except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True) | |
rule_index, valid_rules = _build_faiss_index(raw_rules, lambda r: r) | |
_faiss_rules_index = rule_index | |
_rules_items_list = valid_rules | |
logger.info(f"Loaded and indexed {len(_rules_items_list)} rules.") | |
if _embedder and _faiss_memory_index is not None and _faiss_rules_index is not None: | |
_initialized = True | |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s") | |
else: | |
logger.error("Memory system initialization failed. Core components are not ready.") | |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]: | |
global _memory_items_list, _faiss_memory_index | |
if not _initialized: initialize_memory_system() | |
if not _embedder or _faiss_memory_index is None: return False, "Memory system not ready." | |
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()} | |
memory_json_str = json.dumps(memory_obj) | |
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}" | |
try: | |
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False) | |
_faiss_memory_index.add(np.array(embedding, dtype=np.float32)) | |
_memory_items_list.append(memory_json_str) | |
if STORAGE_BACKEND == "SQLITE": | |
with _get_sqlite_connection() as conn: conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit() | |
elif STORAGE_BACKEND == "HF_DATASET": | |
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) | |
return True, "Memory added." | |
except Exception as e: | |
logger.error(f"Error adding memory entry: {e}", exc_info=True) | |
return False, f"Error: {e}" | |
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]: | |
if not _initialized: initialize_memory_system() | |
if not _faiss_memory_index or _faiss_memory_index.ntotal == 0: return [] | |
try: | |
query_embedding = _embedder.encode([query], convert_to_tensor=False) | |
distances, indices = _faiss_memory_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_memory_index.ntotal)) | |
return [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)] | |
except Exception as e: | |
logger.error(f"Error retrieving memories: {e}", exc_info=True) | |
return [] | |
def add_rule_entry(rule_text: str) -> tuple[bool, str]: | |
global _rules_items_list, _faiss_rules_index | |
if not _initialized: initialize_memory_system() | |
if not _embedder or _faiss_rules_index is None: return False, "Rule system not ready." | |
rule_text = rule_text.strip() | |
if not rule_text or rule_text in _rules_items_list: return False, "duplicate or invalid" | |
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I): return False, "Invalid format." | |
try: | |
embedding = _embedder.encode([rule_text], convert_to_tensor=False) | |
_faiss_rules_index.add(np.array(embedding, dtype=np.float32)) | |
_rules_items_list.append(rule_text) | |
if STORAGE_BACKEND == "SQLITE": | |
with _get_sqlite_connection() as conn: conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit() | |
elif STORAGE_BACKEND == "HF_DATASET": | |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) | |
return True, "Rule added." | |
except Exception as e: | |
logger.error(f"Error adding rule: {e}", exc_info=True) | |
return False, f"Error: {e}" | |
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]: | |
if not _initialized: initialize_memory_system() | |
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return [] | |
try: | |
query_embedding = _embedder.encode([query], convert_to_tensor=False) | |
distances, indices = _faiss_rules_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_rules_index.ntotal)) | |
return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)] | |
except Exception as e: | |
logger.error(f"Error retrieving rules: {e}", exc_info=True) | |
return [] | |
def remove_rule_entry(rule_text_to_delete: str) -> bool: | |
global _rules_items_list, _faiss_rules_index | |
if not _initialized: initialize_memory_system() | |
rule_text_to_delete = rule_text_to_delete.strip() | |
try: | |
idx_to_remove = _rules_items_list.index(rule_text_to_delete) | |
except ValueError: | |
return False | |
try: | |
_faiss_rules_index.remove_ids(np.array([idx_to_remove], dtype='int64')) | |
del _rules_items_list[idx_to_remove] | |
if STORAGE_BACKEND == "SQLITE": | |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit() | |
elif STORAGE_BACKEND == "HF_DATASET": | |
# After removing, we need to push the new state of the list. | |
# Important: This can be slow if the dataset is large. | |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) | |
return True | |
except Exception as e: | |
logger.error(f"Error removing rule: {e}", exc_info=True) | |
return False | |
def get_all_rules_cached() -> list[str]: | |
if not _initialized: initialize_memory_system() | |
return sorted(list(_rules_items_list)) | |
def get_all_memories_cached() -> list[dict]: | |
if not _initialized: initialize_memory_system() | |
valid_mems = [] | |
for m_str in _memory_items_list: | |
try: | |
valid_mems.append(json.loads(m_str)) | |
except json.JSONDecodeError: | |
continue | |
return valid_mems | |
def clear_all_memory_data_backend() -> bool: | |
global _memory_items_list, _faiss_memory_index | |
if not _initialized: initialize_memory_system() | |
_memory_items_list.clear() | |
if _faiss_memory_index: _faiss_memory_index.reset() | |
try: | |
if STORAGE_BACKEND == "SQLITE": | |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit() | |
elif STORAGE_BACKEND == "HF_DATASET": | |
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) | |
return True | |
except Exception as e: | |
logger.error(f"Error clearing memory data: {e}"); return False | |
def clear_all_rules_data_backend() -> bool: | |
global _rules_items_list, _faiss_rules_index | |
if not _initialized: initialize_memory_system() | |
_rules_items_list.clear() | |
if _faiss_rules_index: _faiss_rules_index.reset() | |
try: | |
if STORAGE_BACKEND == "SQLITE": | |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit() | |
elif STORAGE_BACKEND == "HF_DATASET": | |
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) | |
return True | |
except Exception as e: | |
logger.error(f"Error clearing rules data: {e}"); return False | |
def save_faiss_indices_to_disk(): | |
if not _initialized or not faiss: return | |
faiss_dir = "app_data/faiss_indices" | |
os.makedirs(faiss_dir, exist_ok=True) | |
if _faiss_memory_index: faiss.write_index(_faiss_memory_index, os.path.join(faiss_dir, "memory_index.faiss")) | |
if _faiss_rules_index: faiss.write_index(_faiss_rules_index, os.path.join(faiss_dir, "rules_index.faiss")) |