Spaces:
Runtime error
Runtime error
Update model_logic.py
Browse files- model_logic.py +73 -311
model_logic.py
CHANGED
@@ -1,322 +1,84 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
-
import time
|
4 |
-
from datetime import datetime
|
5 |
import logging
|
6 |
-
import
|
7 |
-
import threading
|
8 |
|
9 |
-
|
10 |
-
from sentence_transformers import SentenceTransformer
|
11 |
-
import faiss
|
12 |
-
import numpy as np
|
13 |
-
except ImportError:
|
14 |
-
SentenceTransformer, faiss, np = None, None, None
|
15 |
-
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
|
16 |
-
|
17 |
-
try:
|
18 |
-
import sqlite3
|
19 |
-
except ImportError:
|
20 |
-
sqlite3 = None
|
21 |
-
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
|
22 |
-
|
23 |
-
try:
|
24 |
-
from datasets import load_dataset, Dataset
|
25 |
-
except ImportError:
|
26 |
-
load_dataset, Dataset = None, None
|
27 |
-
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
|
28 |
|
|
|
29 |
logger = logging.getLogger(__name__)
|
30 |
-
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
|
31 |
-
if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)
|
32 |
-
|
33 |
-
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
|
34 |
-
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
|
35 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
36 |
-
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
|
37 |
-
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
|
38 |
-
|
39 |
-
_embedder = None
|
40 |
-
_dimension = 384
|
41 |
-
_faiss_memory_index = None
|
42 |
-
_memory_items_list = []
|
43 |
-
_faiss_rules_index = None
|
44 |
-
_rules_items_list = []
|
45 |
-
|
46 |
-
_initialized = False
|
47 |
-
_init_lock = threading.Lock()
|
48 |
-
|
49 |
-
def _get_sqlite_connection():
|
50 |
-
if not sqlite3: raise ImportError("sqlite3 module is required for SQLite backend.")
|
51 |
-
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
52 |
-
if db_dir: os.makedirs(db_dir, exist_ok=True)
|
53 |
-
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
54 |
-
|
55 |
-
def _init_sqlite_tables():
|
56 |
-
if STORAGE_BACKEND != "SQLITE" or not sqlite3: return
|
57 |
-
try:
|
58 |
-
with _get_sqlite_connection() as conn:
|
59 |
-
cursor = conn.cursor()
|
60 |
-
cursor.execute("CREATE TABLE IF NOT EXISTS memories (id INTEGER PRIMARY KEY, memory_json TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
|
61 |
-
cursor.execute("CREATE TABLE IF NOT EXISTS rules (id INTEGER PRIMARY KEY, rule_text TEXT NOT NULL UNIQUE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)")
|
62 |
-
conn.commit()
|
63 |
-
logger.info("SQLite tables checked/created.")
|
64 |
-
except Exception as e:
|
65 |
-
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
|
66 |
-
|
67 |
-
def _build_faiss_index(items_list, text_extraction_fn):
|
68 |
-
if not _embedder:
|
69 |
-
logger.error("Cannot build FAISS index: Embedder not available.")
|
70 |
-
return None, []
|
71 |
-
|
72 |
-
index = faiss.IndexFlatL2(_dimension)
|
73 |
-
if not items_list: return index, []
|
74 |
-
|
75 |
-
texts_to_embed, valid_items = [], []
|
76 |
-
for item in items_list:
|
77 |
-
try:
|
78 |
-
texts_to_embed.append(text_extraction_fn(item))
|
79 |
-
valid_items.append(item)
|
80 |
-
except (json.JSONDecodeError, TypeError) as e:
|
81 |
-
logger.warning(f"Skipping item during FAISS indexing due to processing error: {e}. Item: '{str(item)[:100]}...'")
|
82 |
-
|
83 |
-
if not texts_to_embed:
|
84 |
-
logger.warning("No valid items to embed for FAISS index after filtering.")
|
85 |
-
return index, []
|
86 |
-
|
87 |
-
try:
|
88 |
-
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
|
89 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
90 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed):
|
91 |
-
index.add(embeddings_np)
|
92 |
-
logger.info(f"FAISS index built with {index.ntotal} / {len(items_list)} items.")
|
93 |
-
return index, valid_items
|
94 |
-
else:
|
95 |
-
logger.error(f"FAISS build failed: Embeddings shape error.")
|
96 |
-
return faiss.IndexFlatL2(_dimension), []
|
97 |
-
except Exception as e:
|
98 |
-
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
99 |
-
return faiss.IndexFlatL2(_dimension), []
|
100 |
-
|
101 |
-
def initialize_memory_system():
|
102 |
-
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
|
103 |
-
|
104 |
-
with _init_lock:
|
105 |
-
if _initialized: return
|
106 |
-
|
107 |
-
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
108 |
-
init_start_time = time.time()
|
109 |
-
|
110 |
-
if not all([SentenceTransformer, faiss, np]):
|
111 |
-
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
|
112 |
-
return
|
113 |
-
|
114 |
-
if not _embedder:
|
115 |
-
try:
|
116 |
-
logger.info("Loading SentenceTransformer model...")
|
117 |
-
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
|
118 |
-
_dimension = _embedder.get_sentence_embedding_dimension() or 384
|
119 |
-
except Exception as e:
|
120 |
-
logger.critical(f"FATAL: Could not load SentenceTransformer model. Semantic search disabled. Error: {e}", exc_info=True)
|
121 |
-
return
|
122 |
-
|
123 |
-
if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()
|
124 |
-
|
125 |
-
raw_mems = []
|
126 |
-
if STORAGE_BACKEND == "SQLITE":
|
127 |
-
try: raw_mems = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
|
128 |
-
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
|
129 |
-
elif STORAGE_BACKEND == "HF_DATASET":
|
130 |
-
try:
|
131 |
-
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
132 |
-
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
133 |
-
raw_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
|
134 |
-
except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
|
135 |
-
|
136 |
-
mem_index, valid_mems = _build_faiss_index(raw_mems, lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}")
|
137 |
-
_faiss_memory_index = mem_index
|
138 |
-
_memory_items_list = valid_mems
|
139 |
-
logger.info(f"Loaded and indexed {len(_memory_items_list)} memories.")
|
140 |
-
|
141 |
-
raw_rules = []
|
142 |
-
if STORAGE_BACKEND == "SQLITE":
|
143 |
-
try: raw_rules = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
|
144 |
-
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
|
145 |
-
elif STORAGE_BACKEND == "HF_DATASET":
|
146 |
-
try:
|
147 |
-
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
148 |
-
if "train" in dataset and "rule_text" in dataset["train"].column_names:
|
149 |
-
raw_rules = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
|
150 |
-
except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)
|
151 |
-
|
152 |
-
rule_index, valid_rules = _build_faiss_index(sorted(list(set(raw_rules))), lambda r: r)
|
153 |
-
_faiss_rules_index = rule_index
|
154 |
-
_rules_items_list = valid_rules
|
155 |
-
logger.info(f"Loaded and indexed {len(_rules_items_list)} rules.")
|
156 |
-
|
157 |
-
if _embedder and _faiss_memory_index is not None and _faiss_rules_index is not None:
|
158 |
-
_initialized = True
|
159 |
-
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
160 |
-
else:
|
161 |
-
logger.error("Memory system initialization failed. Core components are not ready.")
|
162 |
-
|
163 |
-
def _verify_and_rebuild_if_needed(index, items_list, text_extraction_fn):
|
164 |
-
global _memory_items_list, _rules_items_list
|
165 |
-
if not index or index.ntotal != len(items_list):
|
166 |
-
logger.warning(f"FAISS index mismatch detected (Index: {index.ntotal if index else 'None'}, List: {len(items_list)}). Rebuilding...")
|
167 |
-
new_index, valid_items = _build_faiss_index(items_list, text_extraction_fn)
|
168 |
-
if items_list is _memory_items_list:
|
169 |
-
_memory_items_list = valid_items
|
170 |
-
elif items_list is _rules_items_list:
|
171 |
-
_rules_items_list = valid_items
|
172 |
-
return new_index
|
173 |
-
return index
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
if not _initialized: initialize_memory_system()
|
178 |
-
if not _embedder or _faiss_memory_index is None: return False, "Memory system not ready."
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
if
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
_rules_items_list.append(rule_text)
|
228 |
-
_rules_items_list.sort()
|
229 |
-
|
230 |
-
if STORAGE_BACKEND == "SQLITE":
|
231 |
-
with _get_sqlite_connection() as conn: conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
|
232 |
-
elif STORAGE_BACKEND == "HF_DATASET":
|
233 |
-
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
234 |
-
return True, "Rule added."
|
235 |
-
except Exception as e:
|
236 |
-
logger.error(f"Error adding rule: {e}", exc_info=True)
|
237 |
-
return False, f"Error: {e}"
|
238 |
-
|
239 |
-
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
240 |
-
global _faiss_rules_index
|
241 |
-
if not _initialized: initialize_memory_system()
|
242 |
-
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
|
243 |
-
|
244 |
-
_faiss_rules_index = _verify_and_rebuild_if_needed(_faiss_rules_index, _rules_items_list, lambda r: r)
|
245 |
-
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
|
246 |
-
|
247 |
-
try:
|
248 |
-
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
249 |
-
distances, indices = _faiss_rules_index.search(np.array(query_embedding, dtype=np.float32), min(k, _faiss_rules_index.ntotal))
|
250 |
-
return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
|
251 |
-
except Exception as e:
|
252 |
-
logger.error(f"Error retrieving rules: {e}", exc_info=True)
|
253 |
-
return []
|
254 |
-
|
255 |
-
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
256 |
-
global _rules_items_list, _faiss_rules_index
|
257 |
-
if not _initialized: initialize_memory_system()
|
258 |
-
rule_text_to_delete = rule_text_to_delete.strip()
|
259 |
-
if rule_text_to_delete not in _rules_items_list: return False
|
260 |
-
try:
|
261 |
-
new_list = [r for r in _rules_items_list if r != rule_text_to_delete]
|
262 |
-
new_index, valid_items = _build_faiss_index(new_list, lambda r: r)
|
263 |
-
_faiss_rules_index = new_index
|
264 |
-
_rules_items_list = valid_items
|
265 |
-
|
266 |
-
if STORAGE_BACKEND == "SQLITE":
|
267 |
-
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
|
268 |
-
elif STORAGE_BACKEND == "HF_DATASET" and _rules_items_list:
|
269 |
-
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
270 |
-
return True
|
271 |
-
except Exception as e:
|
272 |
-
logger.error(f"Error removing rule: {e}", exc_info=True)
|
273 |
-
return False
|
274 |
-
|
275 |
-
def get_all_rules_cached() -> list[str]:
|
276 |
-
if not _initialized: initialize_memory_system()
|
277 |
-
return list(_rules_items_list)
|
278 |
-
|
279 |
-
def get_all_memories_cached() -> list[dict]:
|
280 |
-
if not _initialized: initialize_memory_system()
|
281 |
-
valid_mems = []
|
282 |
-
for m_str in _memory_items_list:
|
283 |
-
try:
|
284 |
-
valid_mems.append(json.loads(m_str))
|
285 |
-
except json.JSONDecodeError:
|
286 |
-
continue
|
287 |
-
return valid_mems
|
288 |
-
|
289 |
-
def clear_all_memory_data_backend() -> bool:
|
290 |
-
global _memory_items_list, _faiss_memory_index
|
291 |
-
if not _initialized: initialize_memory_system()
|
292 |
-
_memory_items_list.clear()
|
293 |
-
if _faiss_memory_index: _faiss_memory_index.reset()
|
294 |
-
try:
|
295 |
-
if STORAGE_BACKEND == "SQLITE":
|
296 |
-
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
297 |
-
elif STORAGE_BACKEND == "HF_DATASET":
|
298 |
-
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
299 |
-
return True
|
300 |
-
except Exception as e:
|
301 |
-
logger.error(f"Error clearing memory data: {e}"); return False
|
302 |
|
303 |
-
def clear_all_rules_data_backend() -> bool:
|
304 |
-
global _rules_items_list, _faiss_rules_index
|
305 |
-
if not _initialized: initialize_memory_system()
|
306 |
-
_rules_items_list.clear()
|
307 |
-
if _faiss_rules_index: _faiss_rules_index.reset()
|
308 |
try:
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
except Exception as e:
|
315 |
-
|
316 |
-
|
317 |
-
def save_faiss_indices_to_disk():
|
318 |
-
if not _initialized or not faiss: return
|
319 |
-
faiss_dir = "app_data/faiss_indices"
|
320 |
-
os.makedirs(faiss_dir, exist_ok=True)
|
321 |
-
if _faiss_memory_index: faiss.write_index(_faiss_memory_index, os.path.join(faiss_dir, "memory_index.faiss"))
|
322 |
-
if _faiss_rules_index: faiss.write_index(_faiss_rules_index, os.path.join(faiss_dir, "rules_index.faiss"))
|
|
|
1 |
+
# model_logic.py
|
2 |
import os
|
3 |
+
import requests
|
4 |
import json
|
|
|
|
|
5 |
import logging
|
6 |
+
from dotenv import load_dotenv
|
|
|
7 |
|
8 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
11 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
API_KEYS_ENV_VARS = {"GROQ": 'GROQ_API_KEY', "OPENROUTER": 'OPENROUTER_API_KEY', "TOGETHERAI": 'TOGETHERAI_API_KEY', "COHERE": 'COHERE_API_KEY', "XAI": 'XAI_API_KEY', "OPENAI": 'OPENAI_API_KEY', "GOOGLE": 'GOOGLE_API_KEY', "HUGGINGFACE": 'HF_TOKEN'}
|
14 |
+
API_URLS = {"GROQ": 'https://api.groq.com/openai/v1/chat/completions', "OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions', "TOGETHERAI": 'https://api.together.ai/v1/chat/completions', "COHERE": 'https://api.cohere.ai/v1/chat', "XAI": 'https://api.x.ai/v1/chat/completions', "OPENAI": 'https://api.openai.com/v1/chat/completions', "GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/', "HUGGINGFACE": 'https://api-inference.huggingface.co/models/'}
|
|
|
|
|
15 |
|
16 |
+
try:
|
17 |
+
with open("models.json", "r") as f: MODELS_BY_PROVIDER = json.load(f)
|
18 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
19 |
+
logger.warning("models.json not found or invalid. Using a fallback model list.")
|
20 |
+
MODELS_BY_PROVIDER = {"groq": {"default": "llama3-8b-8192", "models": {"Llama 3 8B (Groq)": "llama3-8b-8192"}}}
|
21 |
+
|
22 |
+
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str | None:
|
23 |
+
provider_upper = provider.upper()
|
24 |
+
if ui_api_key_override and ui_api_key_override.strip(): return ui_api_key_override.strip()
|
25 |
+
env_var_name = API_KEYS_ENV_VARS.get(provider_upper)
|
26 |
+
if env_var_name:
|
27 |
+
env_key = os.getenv(env_var_name)
|
28 |
+
if env_key and env_key.strip(): return env_key.strip()
|
29 |
+
return None
|
30 |
+
|
31 |
+
def get_available_providers() -> list[str]:
|
32 |
+
return sorted(list(MODELS_BY_PROVIDER.keys()))
|
33 |
+
|
34 |
+
def get_model_display_names_for_provider(provider: str) -> list[str]:
|
35 |
+
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
|
36 |
+
|
37 |
+
def get_default_model_display_name_for_provider(provider: str) -> str | None:
|
38 |
+
provider_data = MODELS_BY_PROVIDER.get(provider.lower(), {})
|
39 |
+
models_dict = provider_data.get("models", {})
|
40 |
+
default_model_id = provider_data.get("default")
|
41 |
+
if default_model_id and models_dict:
|
42 |
+
for display_name, model_id_val in models_dict.items():
|
43 |
+
if model_id_val == default_model_id: return display_name
|
44 |
+
if models_dict: return sorted(list(models_dict.keys()))[0]
|
45 |
+
return None
|
46 |
+
|
47 |
+
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
|
48 |
+
return MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).get(display_name)
|
49 |
+
|
50 |
+
def call_model_stream(provider: str, model_display_name: str, messages: list[dict], api_key_override: str = None, temperature: float = 0.7, max_tokens: int = None) -> iter:
|
51 |
+
provider_lower = provider.lower()
|
52 |
+
api_key = _get_api_key(provider_lower, api_key_override)
|
53 |
+
base_url = API_URLS.get(provider.upper())
|
54 |
+
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
|
55 |
+
if not all([api_key, base_url, model_id]):
|
56 |
+
yield f"Error: Configuration missing for {provider}/{model_display_name}."
|
57 |
+
return
|
58 |
+
|
59 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
60 |
+
payload = {"model": model_id, "messages": messages, "stream": True, "temperature": temperature}
|
61 |
+
if max_tokens: payload["max_tokens"] = max_tokens
|
62 |
+
if provider_lower == "openrouter": headers["HTTP-Referer"] = os.getenv("OPENROUTER_REFERRER", "http://localhost")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
+
response = requests.post(base_url, headers=headers, json=payload, stream=True, timeout=180)
|
66 |
+
response.raise_for_status()
|
67 |
+
buffer = ""
|
68 |
+
for chunk in response.iter_content(chunk_size=None):
|
69 |
+
buffer += chunk.decode('utf-8', errors='replace')
|
70 |
+
while '\n\n' in buffer:
|
71 |
+
event_str, buffer = buffer.split('\n\n', 1)
|
72 |
+
if not event_str.strip() or not event_str.startswith('data: '): continue
|
73 |
+
data_json = event_str[len('data: '):].strip()
|
74 |
+
if data_json == '[DONE]': return
|
75 |
+
try:
|
76 |
+
data = json.loads(data_json)
|
77 |
+
if data.get("choices") and len(data["choices"]) > 0:
|
78 |
+
delta = data["choices"][0].get("delta", {})
|
79 |
+
if delta and delta.get("content"): yield delta["content"]
|
80 |
+
except json.JSONDecodeError: continue
|
81 |
+
except requests.exceptions.HTTPError as e:
|
82 |
+
yield f"Error: API HTTP Error ({e.response.status_code}): {e.response.text[:200]}"
|
83 |
except Exception as e:
|
84 |
+
yield f"Error: An unexpected error occurred: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|