import os import json import re import logging import time from datetime import datetime from huggingface_hub import whoami from model_logic import call_model_stream, MODELS_BY_PROVIDER, get_default_model_display_name_for_provider from memory_logic import retrieve_memories_semantic, retrieve_rules_semantic from tools.websearch import search_and_scrape_duckduckgo, scrape_url from tools.space_builder import create_huggingface_space, update_huggingface_space_file, list_huggingface_space_files, get_huggingface_space_file_content import prompts from utils import format_insights_for_prompt logger = logging.getLogger(__name__) WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true" TOOL_DECISION_PROVIDER = os.getenv("TOOL_DECISION_PROVIDER", "groq") TOOL_DECISION_MODEL_ID = os.getenv("TOOL_DECISION_MODEL", "llama3-8b-8192") MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7)) def decide_on_tool(user_input: str, chat_history_for_prompt: list, initial_insights_ctx_str: str): user_input_lower = user_input.lower() if "http://" in user_input or "https://" in user_input: url_match = re.search(r'(https?://[^\s]+)', user_input) if url_match: return "scrape_url_and_report", {"url": url_match.group(1)} tool_trigger_keywords = ["search", "build", "create", "make", "update", "modify", "change", "fix", "list", "show", "files", "get", "read", "edit"] if len(user_input.split()) > 3 or "?" in user_input or any(w in user_input_lower for w in tool_trigger_keywords): history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]]) guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ') tool_user_prompt = prompts.get_tool_user_prompt(user_input, history_snippet, guideline_snippet) tool_decision_messages = [{"role": "system", "content": prompts.TOOL_SYSTEM_PROMPT}, {"role": "user", "content": tool_user_prompt}] tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(TOOL_DECISION_PROVIDER.lower(), {}).get("models", {}).items() if mid == TOOL_DECISION_MODEL_ID), None) or get_default_model_display_name_for_provider(TOOL_DECISION_PROVIDER) if tool_model_display: try: tool_resp_raw = "".join(list(call_model_stream(provider=TOOL_DECISION_PROVIDER, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=2048))) json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL) if json_match_tool: action_data = json.loads(json_match_tool.group(0)) return action_data.get("action", "quick_respond"), action_data.get("action_input", {}) except Exception as e: logger.error(f"Tool decision LLM error: {e}") return "quick_respond", {} def orchestrate_and_respond(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None): request_id = os.urandom(4).hex() logger.info(f"ORCHESTRATOR [{request_id}] Start. User: '{user_input[:50]}...'") history_str_for_prompt = "\n".join([f"{t['role']}: {t['content']}" for t in chat_history_for_prompt]) yield "status", "[Checking guidelines...]" initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5) initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights) yield "status", "[Choosing best approach...]" action_type, action_input = decide_on_tool(user_input, chat_history_for_prompt, initial_insights_ctx_str) logger.info(f"ORCHESTRATOR [{request_id}]: Tool Decision: Action='{action_type}', Input='{action_input}'") yield "status", f"[Path: {action_type}]" current_time_str = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S UTC") base_system_prompt = custom_system_prompt or prompts.DEFAULT_SYSTEM_PROMPT final_system_prompt = base_system_prompt.format(current_date_time=current_time_str) context_str = None if action_type == "create_huggingface_space": params = ["space_name", "sdk", "description"] if all(p in action_input for p in params): try: hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("Hugging Face token (HF_TOKEN) not found.") yield "status", "[Tool: Verifying user identity...]" user_info = whoami(token=hf_token) owner = user_info.get("name") if not owner: raise ValueError("Could not determine owner from HF token.") action_input["owner"] = owner yield "status", "[Tool: Generating space content...]" space_gen_messages = [ {"role": "system", "content": prompts.SPACE_GENERATION_SYSTEM_PROMPT}, {"role": "user", "content": prompts.get_space_generation_user_prompt(**action_input)} ] markdown_content = "".join(list(call_model_stream(provider_name, model_display_name, space_gen_messages, ui_api_key_override, 0.1, 4096))) yield "status", "[Tool: Creating Space...]" result = create_huggingface_space(owner=owner, space_name=action_input["space_name"], sdk=action_input["sdk"], markdown_content=markdown_content.strip()) context_str = f"Tool Result (Create Space): {result.get('result') or result.get('error', 'Unknown outcome')}" final_system_prompt += " The space building tool has completed. Inform the user about the result, providing any links or key information from the tool's output." except Exception as e: context_str = f"Tool Failed: An error occurred during space creation process - {e}" else: context_str = "Tool Failed: Missing parameters for create_huggingface_space. Required: " + ", ".join(params) elif action_type in ["list_huggingface_space_files", "get_huggingface_space_file_content", "update_huggingface_space_file"]: tool_map = { "list_huggingface_space_files": (list_huggingface_space_files, ["owner", "space_name"], "Listing files"), "get_huggingface_space_file_content": (get_huggingface_space_file_content, ["owner", "space_name", "file_path"], "Reading file content"), "update_huggingface_space_file": (update_huggingface_space_file, ["owner", "space_name", "file_path", "new_content", "commit_message"], "Updating file") } tool_func, params, status_msg = tool_map[action_type] if all(p in action_input for p in params): yield "status", f"[Tool: {status_msg}...]" result = tool_func(**action_input) context_str = f"Tool Result ({action_type}): {result}" final_system_prompt += " A file operation tool has completed. Inform the user about the result, presenting the data clearly." else: context_str = f"Tool Failed: Missing parameters for {action_type}. Required: " + ", ".join(params) elif action_type == "search_duckduckgo_and_report" and WEB_SEARCH_ENABLED: query = action_input.get("search_engine_query") if query: yield "status", f"[Web: '{query[:60]}'...]" results = search_and_scrape_duckduckgo(query, num_results=2) context_str = "Web Content:\n" + "\n".join([f"Source {i+1} ({r.get('url','N/A')}):\n{r.get('content', r.get('error', 'N/A'))[:3000]}\n---" for i, r in enumerate(results)]) final_system_prompt += " Generate a report/answer from the provided web content, history, & guidelines. Cite URLs as [Source X]." elif action_type == "scrape_url_and_report" and WEB_SEARCH_ENABLED: url = action_input.get("url") if url: yield "status", f"[Web: '{url[:60]}'...]" result = scrape_url(url) context_str = f"Web Content for {url}:\n{result.get('content', result.get('error', 'No content scraped.'))}" final_system_prompt += " Summarize or answer questions based on the scraped web page content." elif action_type == "answer_using_conversation_memory": yield "status", "[Searching conversation memory...]" mems = retrieve_memories_semantic(f"User query: {user_input}\nContext:\n{history_str_for_prompt[-1000:]}", k=2) context_str = "Relevant Past Interactions:\n" + "\n".join([f"- User:{m.get('user_input','')}->AI:{m.get('bot_response','')} (Takeaway:{m.get('metrics',{}).get('takeaway','N/A')})" for m in mems]) if mems else "No relevant past interactions found." final_system_prompt += " Respond using the provided Memory Context, your general knowledge, and the conversation history." final_user_prompt = prompts.get_final_response_prompt(history_str_for_prompt, initial_insights_ctx_str, user_input, context_str) final_llm_messages = [{"role": "system", "content": final_system_prompt}, {"role": "user", "content": final_user_prompt}] streamed_response = "" try: for chunk in call_model_stream(provider_name, model_display_name, final_llm_messages, ui_api_key_override, max_tokens=4096): streamed_response += chunk yield "response_chunk", chunk except Exception as e: streamed_response += f"\n\n(Error: {e})"; yield "response_chunk", f"\n\n(Error: {e})" final_bot_text = streamed_response.strip() or "(No response)" logger.info(f"ORCHESTRATOR [{request_id}]: Finished. Response length: {len(final_bot_text)}") yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list}