Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,15 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
|
5 |
-
|
6 |
-
class GridWorld:
|
7 |
-
def __init__(self, size=4):
|
8 |
-
self.size = size
|
9 |
-
self.agent_pos = [0, 0]
|
10 |
-
self.goal_pos = [size-1, size-1]
|
11 |
-
self.obstacles = [(1, 1), (2, 2)]
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
return self.agent_pos
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
x = min(self.size - 1, x + 1)
|
24 |
-
elif action == 2: # Left
|
25 |
-
y = max(0, y - 1)
|
26 |
-
elif action == 3: # Right
|
27 |
-
y = min(self.size - 1, y + 1)
|
28 |
-
|
29 |
-
self.agent_pos = [x, y]
|
30 |
-
|
31 |
-
if tuple(self.agent_pos) in self.obstacles:
|
32 |
-
return self.agent_pos, -10, False, {}
|
33 |
-
elif self.agent_pos == self.goal_pos:
|
34 |
-
return self.agent_pos, 10, True, {}
|
35 |
-
else:
|
36 |
-
return self.agent_pos, -1, False, {}
|
37 |
-
|
38 |
-
# Define the RL agent
|
39 |
-
class QLearningAgent:
|
40 |
-
def __init__(self, env, alpha=0.1, gamma=0.9, epsilon=0.1):
|
41 |
-
self.env = env
|
42 |
-
self.alpha = alpha
|
43 |
-
self.gamma = gamma
|
44 |
-
self.epsilon = epsilon
|
45 |
-
self.q_table = np.zeros((env.size, env.size, 4))
|
46 |
-
|
47 |
-
def choose_action(self, state):
|
48 |
-
if np.random.uniform(0, 1) < self.epsilon:
|
49 |
-
return np.random.choice(4)
|
50 |
-
else:
|
51 |
-
return np.argmax(self.q_table[state[0], state[1]])
|
52 |
-
|
53 |
-
def learn(self, state, action, reward, next_state):
|
54 |
-
best_next_action = np.argmax(self.q_table[next_state[0], next_state[1]])
|
55 |
-
td_target = reward + self.gamma * self.q_table[next_state[0], next_state[1], best_next_action]
|
56 |
-
td_error = td_target - self.q_table[state[0], state[1], action]
|
57 |
-
self.q_table[state[0], state[1], action] += self.alpha * td_error
|
58 |
-
|
59 |
-
# Initialize the environment and agent
|
60 |
-
env = GridWorld()
|
61 |
-
agent = QLearningAgent(env)
|
62 |
-
|
63 |
-
def visualize_grid(agent_pos, goal_pos, obstacles, path=None):
|
64 |
-
grid = np.zeros((env.size, env.size), dtype=str)
|
65 |
-
grid[agent_pos[0], agent_pos[1]] = 'A'
|
66 |
-
grid[goal_pos[0], goal_pos[1]] = 'G'
|
67 |
-
for obstacle in obstacles:
|
68 |
-
grid[obstacle[0], obstacle[1]] = 'X'
|
69 |
-
|
70 |
-
if path:
|
71 |
-
for step in path:
|
72 |
-
grid[step[0], step[1]] = 'P'
|
73 |
-
|
74 |
-
# Convert grid to a DataFrame for Gradio
|
75 |
-
grid_df = pd.DataFrame(grid, index=range(env.size), columns=range(env.size))
|
76 |
-
return grid_df
|
77 |
-
|
78 |
-
def train_agent(steps=100):
|
79 |
-
state = env.reset()
|
80 |
-
path = [env.agent_pos]
|
81 |
-
for _ in range(steps):
|
82 |
-
action = agent.choose_action(state)
|
83 |
-
next_state, reward, done, _ = env.step(action)
|
84 |
-
agent.learn(state, action, reward, next_state)
|
85 |
-
state = next_state
|
86 |
-
path.append(env.agent_pos)
|
87 |
-
if done:
|
88 |
-
break
|
89 |
-
grid_df = visualize_grid(env.agent_pos, env.goal_pos, env.obstacles, path)
|
90 |
-
return grid_df
|
91 |
-
|
92 |
-
# Create the Gradio interface
|
93 |
-
input_steps = gr.Slider(1, 1000, value=100, label="Number of Training Steps")
|
94 |
-
output_grid = gr.Dataframe(label="Grid World")
|
95 |
-
|
96 |
-
# Define the Gradio interface function
|
97 |
-
def update_grid(steps):
|
98 |
-
return train_agent(steps)
|
99 |
-
|
100 |
-
# Create the Gradio interface
|
101 |
-
iface = gr.Interface(
|
102 |
-
fn=update_grid,
|
103 |
-
inputs=[input_steps],
|
104 |
-
outputs=[output_grid],
|
105 |
-
title="Reinforcement Learning with Grid World",
|
106 |
-
description="Train a Q-learning agent to navigate a grid world and visualize the results."
|
107 |
-
)
|
108 |
-
|
109 |
-
# Launch the interface
|
110 |
-
iface.launch()
|
|
|
1 |
+
# app.py
|
|
|
|
|
2 |
|
3 |
+
from flask import Flask
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Create a Flask application instance
|
6 |
+
app = Flask(__name__)
|
|
|
7 |
|
8 |
+
# Define a route for the home page
|
9 |
+
@app.route('/')
|
10 |
+
def home():
|
11 |
+
return "Hello, Flask on Port 7860!"
|
12 |
|
13 |
+
# Run the Flask app on port 7860
|
14 |
+
if __name__ == '__main__':
|
15 |
+
app.run(port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|