import numpy as np import gradio as gr # Define the grid world environment class GridWorld: def __init__(self, size=4): self.size = size self.agent_pos = [0, 0] self.goal_pos = [size-1, size-1] self.obstacles = [(1, 1), (2, 2)] def reset(self): self.agent_pos = [0, 0] return self.agent_pos def step(self, action): x, y = self.agent_pos if action == 0: # Up x = max(0, x - 1) elif action == 1: # Down x = min(self.size - 1, x + 1) elif action == 2: # Left y = max(0, y - 1) elif action == 3: # Right y = min(self.size - 1, y + 1) self.agent_pos = [x, y] if tuple(self.agent_pos) in self.obstacles: return self.agent_pos, -10, False, {} elif self.agent_pos == self.goal_pos: return self.agent_pos, 10, True, {} else: return self.agent_pos, -1, False, {} # Define the RL agent class QLearningAgent: def __init__(self, env, alpha=0.1, gamma=0.9, epsilon=0.1): self.env = env self.alpha = alpha self.gamma = gamma self.epsilon = epsilon self.q_table = np.zeros((env.size, env.size, 4)) def choose_action(self, state): if np.random.uniform(0, 1) < self.epsilon: return np.random.choice(4) else: return np.argmax(self.q_table[state[0], state[1]]) def learn(self, state, action, reward, next_state): best_next_action = np.argmax(self.q_table[next_state[0], next_state[1]]) td_target = reward + self.gamma * self.q_table[next_state[0], next_state[1], best_next_action] td_error = td_target - self.q_table[state[0], state[1], action] self.q_table[state[0], state[1], action] += self.alpha * td_error # Initialize the environment and agent env = GridWorld() agent = QLearningAgent(env) def visualize_grid(agent_pos, goal_pos, obstacles): grid = np.zeros((env.size, env.size), dtype=str) grid[agent_pos[0], agent_pos[1]] = 'A' grid[goal_pos[0], goal_pos[1]] = 'G' for obstacle in obstacles: grid[obstacle[0], obstacle[1]] = 'X' return '\n'.join([' '.join(row) for row in grid]) def train_agent(steps=100): state = env.reset() for _ in range(steps): action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) agent.learn(state, action, reward, next_state) state = next_state if done: break return visualize_grid(env.agent_pos, env.goal_pos, env.obstacles) # Create the Gradio interface input_steps = gr.Slider(1, 1000, value=100, label="Number of Training Steps") output_grid = gr.Textbox(label="Grid World") # Define the Gradio interface function def update_grid(steps): return train_agent(steps) # Create the Gradio interface iface = gr.Interface( fn=update_grid, inputs=[input_steps], outputs=[output_grid], title="Reinforcement Learning with Grid World", description="Train a Q-learning agent to navigate a grid world and visualize the results." ) # Launch the interface iface.launch()