Spaces:
Sleeping
Sleeping
File size: 9,968 Bytes
1c7cefc 4624af3 e9d9741 a9254a4 4624af3 7754f0a 4624af3 679afad 4624af3 1c7cefc 679afad e9d9741 679afad a9254a4 679afad a9254a4 679afad a9254a4 e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad 4624af3 679afad 4624af3 679afad 4624af3 679afad 4624af3 679afad 4624af3 a9254a4 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad e9d9741 679afad 4624af3 679afad 4624af3 679afad 4624af3 1c7cefc 679afad 4624af3 679afad 4624af3 679afad 4624af3 679afad e9d9741 679afad 4624af3 679afad 4624af3 679afad 4624af3 679afad e9d9741 679afad e9d9741 679afad 4624af3 679afad 4624af3 679afad 1c7cefc 679afad 4624af3 679afad 4624af3 1c7cefc 679afad 1c7cefc 679afad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import threading
from flask import Flask, render_template, request, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, clean_text, LOCAL_DB_DIR
import logging
import time
import json
from datetime import datetime
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
# --- Basic Flask App Setup ---
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Global State Management ---
loading_complete = True
last_update_time = None
# --- Embedding and Vector DB Management ---
def get_embedding_model():
"""Initializes and returns a singleton HuggingFace embedding model."""
# Using a simple hasattr check for a singleton pattern
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def get_vector_db():
"""Initializes and returns a singleton Chroma DB client."""
if not os.path.exists(LOCAL_DB_DIR):
logger.warning(f"Vector DB not found at {LOCAL_DB_DIR}. It may need to be downloaded or created.")
return None
try:
# Using a simple hasattr check for a singleton pattern
if not hasattr(get_vector_db, "db_instance"):
get_vector_db.db_instance = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=get_embedding_model(),
collection_name="news_articles"
)
return get_vector_db.db_instance
except Exception as e:
logger.error(f"Failed to load vector DB: {e}")
# Invalidate instance on failure
if hasattr(get_vector_db, "db_instance"):
delattr(get_vector_db, "db_instance")
return None
# --- Background Processing ---
def load_feeds_in_background():
"""Fetches RSS feeds, processes articles, and uploads to Hub in a background thread."""
global loading_complete, last_update_time
# Ensure only one background process runs at a time
if not loading_complete:
logger.info("An update is already in progress. Skipping.")
return
loading_complete = False
try:
logger.info("Starting background RSS feed fetch and processing...")
articles = fetch_rss_feeds()
logger.info(f"Fetched {len(articles)} articles from RSS feeds.")
if articles:
process_and_store_articles(articles)
upload_to_hf_hub()
last_update_time = datetime.now().isoformat()
logger.info("Background feed processing complete.")
except Exception as e:
logger.error(f"Error in background feed loading: {e}")
finally:
loading_complete = True
# --- Data Transformation Helper ---
def format_articles_from_db(docs):
"""
Takes ChromaDB documents (with metadata) and formats them into a standardized list of article dictionaries.
Handles deduplication based on title and link.
"""
enriched_articles = []
seen_keys = set()
# The 'docs' can be a list of (Document, score) tuples or a dict from .get()
items = []
if isinstance(docs, dict) and 'metadatas' in docs:
items = zip(docs['documents'], docs['metadatas'])
elif isinstance(docs, list):
items = [(doc.page_content, doc.metadata) for doc, score in docs]
for doc_content, meta in items:
if not meta: continue
title = meta.get("title", "No Title")
link = meta.get("link", "")
# Use a composite key to identify unique articles
key = f"{title}|{link}"
if key not in seen_keys:
seen_keys.add(key)
# Safely parse the published date
published_str = meta.get("published", "").strip()
try:
published_iso = datetime.strptime(published_str, "%Y-%m-%d %H:%M:%S").isoformat()
except (ValueError, TypeError):
published_iso = datetime.utcnow().isoformat() # Default to now if format is wrong
enriched_articles.append({
"id": meta.get("id", link), # Provide a unique ID
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published_iso,
"image": meta.get("image", "svg"),
})
# Sort by date descending by default
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
return enriched_articles
# --------------------------------------------------------------------------------
# --- API v1 Endpoints ---
# --------------------------------------------------------------------------------
#
# API Usage Guide:
#
# GET /api/v1/search?q=<query>&limit=<n>
# - Performs semantic search.
# - `q`: The search term (required).
# - `limit`: Max number of results to return (optional, default=20).
#
# GET /api/v1/articles/category/<name>?limit=<n>&offset=<o>
# - Retrieves all articles for a given category.
# - `name`: The category name (e.g., "Technology").
# - `limit`: For pagination (optional, default=20).
# - `offset`: For pagination (optional, default=0).
#
# GET /api/v1/categories
# - Returns a list of all unique article categories.
#
# GET /api/v1/status
# - Checks the status of the background data processing task.
#
# --------------------------------------------------------------------------------
@app.route('/api/v1/search', methods=['GET'])
def api_search():
"""API endpoint for semantic search."""
query = request.args.get('q')
limit = request.args.get('limit', default=20, type=int)
if not query:
return jsonify({"error": "Query parameter 'q' is required."}), 400
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
logger.info(f"API: Performing semantic search for: '{query}'")
results = vector_db.similarity_search_with_relevance_scores(query, k=limit)
formatted_articles = format_articles_from_db(results)
return jsonify(formatted_articles)
except Exception as e:
logger.error(f"API Search error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred during search."}), 500
@app.route('/api/v1/articles/category/<string:category_name>', methods=['GET'])
def api_get_articles_by_category(category_name):
"""API endpoint to get articles filtered by category with pagination."""
limit = request.args.get('limit', default=20, type=int)
offset = request.args.get('offset', default=0, type=int)
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
logger.info(f"API: Fetching articles for category '{category_name}'")
# Use Chroma's metadata filtering for efficiency
results = vector_db.get(
where={"category": category_name},
include=['documents', 'metadatas']
)
formatted_articles = format_articles_from_db(results)
paginated_results = formatted_articles[offset : offset + limit]
return jsonify({
"category": category_name,
"total_articles": len(formatted_articles),
"articles": paginated_results
})
except Exception as e:
logger.error(f"API Category fetch error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred."}), 500
@app.route('/api/v1/categories', methods=['GET'])
def api_get_categories():
"""API endpoint to get a list of all unique categories."""
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
# Fetch only metadata to be efficient
all_metadata = vector_db.get(include=['metadatas'])['metadatas']
if not all_metadata:
return jsonify([])
unique_categories = sorted(list({meta['category'] for meta in all_metadata if 'category' in meta}))
return jsonify(unique_categories)
except Exception as e:
logger.error(f"API Categories fetch error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred."}), 500
@app.route('/api/v1/status', methods=['GET'])
def api_get_status():
"""API endpoint to check the data processing status."""
return jsonify({
"status": "complete" if loading_complete else "loading",
"last_update_time": last_update_time
})
# --------------------------------------------------------------------------------
# --- Web Application Routes ---
# --------------------------------------------------------------------------------
@app.route('/')
def index():
"""Renders the main web page. Data is fetched by frontend JavaScript."""
return render_template("index.html")
@app.route('/card')
def card_load():
"""Renders a sample card component."""
return render_template("card.html")
# --- Main Application Runner ---
if __name__ == "__main__":
# On startup, ensure the database exists or download it.
if not os.path.exists(LOCAL_DB_DIR):
logger.info(f"No local DB found at '{LOCAL_DB_DIR}'. Downloading from Hugging Face Hub...")
download_from_hf_hub()
# Initialize the vector DB instance
get_vector_db()
# Start the first background update immediately.
threading.Thread(target=load_feeds_in_background, daemon=True).start()
# Note: For a production environment, use a proper WSGI server like Gunicorn or uWSGI
# instead of Flask's built-in development server.
app.run(host="0.0.0.0", port=7860, debug=False) |