File size: 10,888 Bytes
1c7cefc
a9254a4
1176acb
 
a9254a4
 
 
 
 
 
 
 
 
1c7cefc
 
 
 
 
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9f24c
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
1176acb
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bbce9
1176acb
 
 
 
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176acb
 
 
 
a9254a4
 
1176acb
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7cefc
a9254a4
 
 
b5bbce9
a9254a4
 
 
 
 
 
 
 
 
b5bbce9
a9254a4
 
 
 
 
1c7cefc
b5bbce9
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7cefc
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
1c7cefc
a9254a4
1176acb
a9254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7cefc
 
a9254a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
import shutil
import rss_feeds
from datetime import datetime, date
import dateutil.parser
import hashlib
import re

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_ARTICLES_PER_FEED = 10
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"

# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()

def get_embedding_model():
    """Returns a singleton instance of the embedding model to avoid reloading."""
    if not hasattr(get_embedding_model, "model"):
        get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    return get_embedding_model.model

def get_daily_db_dir():
    """Returns the path for today's Chroma DB."""
    return f"chroma_db_{date.today().isoformat()}"

def clean_text(text):
    """Clean text by removing HTML tags and extra whitespace."""
    if not text or not isinstance(text, str):
        return ""
    text = re.sub(r'<.*?>', '', text)
    text = ' '.join(text.split())
    return text.strip().lower()

def fetch_rss_feeds():
    articles = []
    seen_keys = set()
    for feed_url in RSS_FEEDS:
        try:
            logger.info(f"Fetching {feed_url}")
            feed = feedparser.parse(feed_url)
            if feed.bozo:
                logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
                continue
            article_count = 0
            for entry in feed.entries:
                if article_count >= MAX_ARTICLES_PER_FEED:
                    break
                title = entry.get("title", "No Title")
                link = entry.get("link", "")
                description = entry.get("summary", entry.get("description", ""))
                
                title = clean_text(title)
                link = clean_text(link)
                description = clean_text(description)

                published = "Unknown Date"
                for date_field in ["published", "updated", "created", "pubDate"]:
                    if date_field in entry:
                        try:
                            parsed_date = dateutil.parser.parse(entry[date_field])
                            published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
                            break
                        except (ValueError, TypeError) as e:
                            logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
                            continue

                description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
                key = f"{title}|{link}|{published}|{description_hash}"
                if key not in seen_keys:
                    seen_keys.add(key)
                    image = "svg"
                    for img_source in [
                        lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
                        lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
                        lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
                        lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
                    ]:
                        try:
                            img = img_source(entry)
                            if img and img.strip():
                                image = img
                                break
                        except (IndexError, AttributeError, TypeError):
                            continue

                    articles.append({
                        "title": title,
                        "link": link,
                        "description": description,
                        "published": published,
                        "category": categorize_feed(feed_url),
                        "image": image,
                    })
                    article_count += 1
        except Exception as e:
            logger.error(f"Error fetching {feed_url}: {e}")
    logger.info(f"Total articles fetched: {len(articles)}")
    return articles

def categorize_feed(url):
    """Categorize an RSS feed based on its URL."""
    if not url or not isinstance(url, str):
        logger.warning(f"Invalid URL provided for categorization: {url}")
        return "Uncategorized"

    url = url.lower().strip()

    logger.debug(f"Categorizing URL: {url}")

    if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
        return "Academic Papers"
    elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
        return "Business"
    elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
        return "Stocks & Markets"
    elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
        return "Federal Government"
    elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
        return "Weather"
    elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
        return "Data & Statistics"
    elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
        return "Space"
    elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
        return "Science"
    elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
        return "Tech"
    elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
        return "Astrology"
    elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
        return "Politics"
    elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
        return "Earth Weather"
    elif "vogue" in url:
        return "Lifestyle"
    elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
        return "Physics"
    else:
        logger.warning(f"No matching category found for URL: {url}")
        return "Uncategorized"

def process_and_store_articles(articles):
    db_path = get_daily_db_dir()
    vector_db = Chroma(
        persist_directory=db_path,
        embedding_function=get_embedding_model(),
        collection_name=COLLECTION_NAME
    )
    
    try:
        existing_ids = set(vector_db.get(include=[])["ids"])
    except Exception:
        existing_ids = set()

    docs_to_add = []
    ids_to_add = []
    
    for article in articles:
        try:
            title = clean_text(article["title"])
            link = clean_text(article["link"])
            description = clean_text(article["description"])
            published = article["published"]
            description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
            
            doc_id = f"{title}|{link}|{published}|{description_hash}"
            
            if doc_id in existing_ids:
                logger.debug(f"Skipping duplicate in DB {db_path}: {doc_id}")
                continue

            metadata = {
                "title": article["title"],
                "link": article["link"],
                "original_description": article["description"],
                "published": article["published"],
                "category": article["category"],
                "image": article["image"],
            }
            doc = Document(page_content=description, metadata=metadata)
            docs_to_add.append(doc)
            ids_to_add.append(doc_id)
            existing_ids.add(doc_id)
        except Exception as e:
            logger.error(f"Error processing article {article.get('title', 'N/A')}: {e}")
    
    if docs_to_add:
        try:
            vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
            vector_db.persist()
            logger.info(f"Added {len(docs_to_add)} new articles to DB {db_path}. Total in DB: {vector_db._collection.count()}")
        except Exception as e:
            logger.error(f"Error storing articles in {db_path}: {e}")

def download_from_hf_hub():
    try:
        hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
        logger.info(f"Downloading all DBs from {REPO_ID}...")
        snapshot_download(
            repo_id=REPO_ID,
            repo_type="dataset",
            local_dir=".",
            local_dir_use_symlinks=False,
            allow_patterns="chroma_db_*/**",
            token=HF_API_TOKEN
        )
        logger.info("Finished downloading DBs.")
    except Exception as e:
        logger.error(f"Error downloading from Hugging Face Hub: {e}")

def upload_to_hf_hub():
    db_path = get_daily_db_dir()
    if os.path.exists(db_path):
        try:
            logger.info(f"Uploading updated Chroma DB '{db_path}' to {REPO_ID}...")
            hf_api.upload_folder(
                folder_path=db_path,
                path_in_repo=db_path,
                repo_id=REPO_ID,
                repo_type="dataset",
                token=HF_API_TOKEN
            )
            logger.info(f"Database folder '{db_path}' uploaded to: {REPO_ID}")
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face Hub: {e}")

if __name__ == "__main__":
    download_from_hf_hub()
    articles = fetch_rss_feeds()
    process_and_store_articles(articles)
    upload_to_hf_hub()