RSS_News_1 / app.py
broadfield-dev's picture
Update app.py
1252efa verified
raw
history blame
10.1 kB
import os
import threading
from flask import Flask, render_template, request, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, clean_text, LOCAL_DB_DIR
import logging
import time
from datetime import datetime
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
# --- Basic Flask App Setup ---
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Global State Management ---
loading_complete = True
last_update_time = None
# --- Embedding and Vector DB Management ---
def get_embedding_model():
"""Initializes and returns a singleton HuggingFace embedding model."""
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def get_vector_db():
"""Initializes and returns a singleton Chroma DB client."""
if not os.path.exists(LOCAL_DB_DIR):
logger.warning(f"Vector DB not found at {LOCAL_DB_DIR}. It may need to be downloaded or created.")
return None
try:
if not hasattr(get_vector_db, "db_instance"):
get_vector_db.db_instance = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=get_embedding_model(),
collection_name="news_articles"
)
return get_vector_db.db_instance
except Exception as e:
logger.error(f"Failed to load vector DB: {e}")
if hasattr(get_vector_db, "db_instance"):
delattr(get_vector_db, "db_instance")
return None
# --- Background Processing ---
def load_feeds_in_background():
"""Fetches RSS feeds, processes articles, and uploads to Hub in a background thread."""
global loading_complete, last_update_time
if not loading_complete:
logger.info("An update is already in progress. Skipping.")
return
loading_complete = False
try:
logger.info("Starting background RSS feed fetch and processing...")
articles = fetch_rss_feeds()
logger.info(f"Fetched {len(articles)} articles from RSS feeds.")
if articles:
process_and_store_articles(articles)
upload_to_hf_hub()
last_update_time = datetime.now().isoformat()
logger.info("Background feed processing complete.")
except Exception as e:
logger.error(f"Error in background feed loading: {e}")
finally:
loading_complete = True
# --- Data Transformation Helper (Used by both SSR and API) ---
def format_articles_from_db(docs):
"""
Takes ChromaDB documents and formats them into a standardized list of article dictionaries.
"""
enriched_articles = []
seen_keys = set()
items = []
# Handle .get() results (dict of lists)
if isinstance(docs, dict) and 'metadatas' in docs:
items = zip(docs.get('documents', []), docs.get('metadatas', []))
# Handle similarity_search results (list of (Document, score) tuples)
elif isinstance(docs, list):
items = [(doc.page_content, doc.metadata) for doc, score in docs]
for doc_content, meta in items:
if not meta: continue
title = meta.get("title", "No Title")
link = meta.get("link", "")
key = f"{title}|{link}"
if key not in seen_keys:
seen_keys.add(key)
published_str = meta.get("published", "").strip()
try:
# The format from your original `process_and_store_articles`
published_iso = datetime.strptime(published_str, "%Y-%m-%d %H:%M:%S").isoformat()
except (ValueError, TypeError):
published_iso = datetime.utcnow().isoformat()
enriched_articles.append({
"id": meta.get("id", link),
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published_iso,
"image": meta.get("image", "svg"),
})
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
return enriched_articles
# --------------------------------------------------------------------------------
# --- Web Application Route (Server-Side Rendered) ---
# --------------------------------------------------------------------------------
@app.route('/')
def index():
"""
Renders the main web page by fetching, processing, and passing data
to the template on the server side. This preserves the original functionality.
"""
# Perform startup checks
if not os.path.exists(LOCAL_DB_DIR):
logger.info(f"No Chroma DB found at '{LOCAL_DB_DIR}', downloading from Hugging Face Hub...")
download_from_hf_hub()
# Trigger background update
threading.Thread(target=load_feeds_in_background, daemon=True).start()
try:
# Fetch all data from the DB for rendering
vector_db = get_vector_db()
if not vector_db:
raise ConnectionError("Database could not be loaded.")
all_docs = vector_db.get(include=['documents', 'metadatas'])
if not all_docs or not all_docs['metadatas']:
logger.info("No articles in the DB yet for initial render.")
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
# Process and categorize articles for the template
enriched_articles = format_articles_from_db(all_docs)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
categorized_articles = dict(sorted(categorized_articles.items()))
# Limit to 10 articles per category for the main page view
for cat in categorized_articles:
categorized_articles[cat] = categorized_articles[cat][:10]
return render_template(
"index.html",
categorized_articles=categorized_articles,
has_articles=True,
# The original code didn't pass loading, but it's good practice
loading=not loading_complete
)
except Exception as e:
logger.error(f"Error rendering index page: {e}", exc_info=True)
# Fallback render in case of error
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True, error="Could not load articles.")
# Your original search route, which was also server-side
# We can keep it or decide to use the API for search on the frontend
@app.route('/search', methods=['POST'])
def search():
# This route returns a JSON payload to be handled by JavaScript.
# It functions like an API endpoint and is a good example of a hybrid approach.
query = request.form.get('search')
if not query:
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available"}), 503
results = vector_db.similarity_search_with_relevance_scores(query, k=50)
enriched_articles = format_articles_from_db(results)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
return jsonify({
"categorized_articles": categorized_articles,
"has_articles": bool(enriched_articles),
"loading": False
})
# --------------------------------------------------------------------------------
# --- NEW: Standalone API v1 Endpoints (Return only JSON) ---
# --------------------------------------------------------------------------------
@app.route('/api/v1/search', methods=['GET'])
def api_search():
"""API endpoint for semantic search."""
query = request.args.get('q')
limit = request.args.get('limit', default=20, type=int)
if not query:
return jsonify({"error": "Query parameter 'q' is required."}), 400
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
results = vector_db.similarity_search_with_relevance_scores(query, k=limit)
formatted_articles = format_articles_from_db(results)
return jsonify(formatted_articles)
except Exception as e:
logger.error(f"API Search error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred during search."}), 500
@app.route('/api/v1/articles/category/<string:category_name>', methods=['GET'])
def api_get_articles_by_category(category_name):
"""API endpoint to get articles filtered by category with pagination."""
limit = request.args.get('limit', default=20, type=int)
offset = request.args.get('offset', default=0, type=int)
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
results = vector_db.get(where={"category": category_name}, include=['documents', 'metadatas'])
formatted_articles = format_articles_from_db(results)
paginated_results = formatted_articles[offset : offset + limit]
return jsonify({
"category": category_name,
"total_articles": len(formatted_articles),
"articles": paginated_results
})
except Exception as e:
logger.error(f"API Category fetch error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred."}), 500
# Other routes like /card, /get_updates, etc. from your original file would go here.
# --- Main Application Runner ---
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False)