Spaces:
Sleeping
Sleeping
Update rss_processor.py
Browse files- rss_processor.py +158 -139
rss_processor.py
CHANGED
@@ -4,49 +4,89 @@ from langchain.vectorstores import Chroma
|
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.docstore.document import Document
|
6 |
import logging
|
7 |
-
from huggingface_hub import HfApi, login
|
8 |
-
import
|
9 |
import json
|
10 |
-
from datetime import datetime
|
11 |
import dateutil.parser
|
12 |
import hashlib
|
13 |
import re
|
|
|
14 |
|
15 |
# Setup logging
|
16 |
-
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
# Constants
|
20 |
-
|
21 |
-
LOCAL_DB_DIR = "
|
22 |
FEEDS_FILE = "rss_feeds.json"
|
23 |
COLLECTION_NAME = "news_articles"
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
25 |
-
|
|
|
26 |
|
|
|
27 |
# Initialize Hugging Face API
|
28 |
login(token=HF_API_TOKEN)
|
29 |
hf_api = HfApi()
|
30 |
|
31 |
-
# Initialize embedding model
|
|
|
32 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def clean_text(text):
|
42 |
"""Clean text by removing HTML tags and extra whitespace."""
|
43 |
if not text or not isinstance(text, str):
|
44 |
return ""
|
|
|
45 |
text = re.sub(r'<.*?>', '', text)
|
|
|
46 |
text = ' '.join(text.split())
|
47 |
return text.strip().lower()
|
48 |
|
49 |
def fetch_rss_feeds():
|
|
|
50 |
articles = []
|
51 |
seen_keys = set()
|
52 |
|
@@ -54,7 +94,7 @@ def fetch_rss_feeds():
|
|
54 |
with open(FEEDS_FILE, 'r') as f:
|
55 |
feed_categories = json.load(f)
|
56 |
except FileNotFoundError:
|
57 |
-
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
|
58 |
return []
|
59 |
|
60 |
for category, feeds in feed_categories.items():
|
@@ -68,19 +108,16 @@ def fetch_rss_feeds():
|
|
68 |
logger.info(f"Fetching {feed_url}")
|
69 |
feed = feedparser.parse(feed_url)
|
70 |
if feed.bozo:
|
71 |
-
logger.warning(f"
|
72 |
continue
|
73 |
-
|
74 |
-
for entry in feed.entries:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
link = entry.get("link", "")
|
79 |
-
description = entry.get("summary", entry.get("description", ""))
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
description = clean_text(description)
|
84 |
|
85 |
published = "Unknown Date"
|
86 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
@@ -89,153 +126,135 @@ def fetch_rss_feeds():
|
|
89 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
90 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
91 |
break
|
92 |
-
except (ValueError, TypeError)
|
93 |
-
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
|
94 |
continue
|
95 |
|
|
|
96 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
97 |
key = f"{title}|{link}|{published}|{description_hash}"
|
|
|
98 |
if key not in seen_keys:
|
99 |
seen_keys.add(key)
|
100 |
-
image = "svg"
|
101 |
-
for img_source in [
|
102 |
-
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
|
103 |
-
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
|
104 |
-
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
|
105 |
-
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
|
106 |
-
]:
|
107 |
-
try:
|
108 |
-
img = img_source(entry)
|
109 |
-
if img and img.strip():
|
110 |
-
image = img
|
111 |
-
break
|
112 |
-
except (IndexError, AttributeError, TypeError):
|
113 |
-
continue
|
114 |
-
|
115 |
articles.append({
|
116 |
-
"title": title,
|
117 |
"link": link,
|
118 |
"description": description,
|
119 |
"published": published,
|
120 |
-
"category": category,
|
121 |
-
"image": image,
|
122 |
})
|
123 |
-
article_count += 1
|
124 |
except Exception as e:
|
125 |
-
logger.error(f"Error fetching {feed_url}: {e}")
|
126 |
-
|
|
|
127 |
return articles
|
128 |
|
129 |
-
def
|
130 |
-
"""
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
|
142 |
-
return "Business"
|
143 |
-
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
|
144 |
-
return "Stocks & Markets"
|
145 |
-
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
|
146 |
-
return "Federal Government"
|
147 |
-
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
|
148 |
-
return "Weather"
|
149 |
-
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
|
150 |
-
return "Data & Statistics"
|
151 |
-
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
|
152 |
-
return "Space"
|
153 |
-
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
|
154 |
-
return "Science"
|
155 |
-
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
|
156 |
-
return "Tech"
|
157 |
-
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
|
158 |
-
return "Astrology"
|
159 |
-
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
|
160 |
-
return "Politics"
|
161 |
-
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
|
162 |
-
return "Earth Weather"
|
163 |
-
elif "vogue" in url:
|
164 |
-
return "Lifestyle"
|
165 |
-
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
|
166 |
-
return "Physics"
|
167 |
-
else:
|
168 |
-
logger.warning(f"No matching category found for URL: {url}")
|
169 |
-
return "Uncategorized"
|
170 |
|
171 |
-
def process_and_store_articles(articles):
|
172 |
-
documents = []
|
173 |
-
existing_ids = set(vector_db.get()["ids"]) # Load existing IDs once
|
174 |
for article in articles:
|
175 |
try:
|
|
|
176 |
title = clean_text(article["title"])
|
177 |
-
link =
|
178 |
-
description = clean_text(article["description"])
|
179 |
published = article["published"]
|
|
|
180 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
181 |
doc_id = f"{title}|{link}|{published}|{description_hash}"
|
|
|
182 |
if doc_id in existing_ids:
|
183 |
-
logger.debug(f"Skipping duplicate in DB: {
|
184 |
continue
|
|
|
|
|
|
|
|
|
185 |
metadata = {
|
186 |
"title": article["title"],
|
187 |
"link": article["link"],
|
188 |
-
"original_description": article["description"],
|
189 |
"published": article["published"],
|
190 |
"category": article["category"],
|
191 |
-
|
|
|
192 |
}
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
196 |
except Exception as e:
|
197 |
-
logger.error(f"Error processing article {article
|
198 |
|
199 |
-
if
|
|
|
200 |
try:
|
201 |
-
|
202 |
-
vector_db.
|
203 |
-
|
|
|
204 |
except Exception as e:
|
205 |
-
logger.error(f"
|
206 |
-
|
207 |
-
def download_from_hf_hub():
|
208 |
-
if not os.path.exists(LOCAL_DB_DIR):
|
209 |
-
try:
|
210 |
-
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
|
211 |
-
logger.info(f"Downloading Chroma DB from {REPO_ID}...")
|
212 |
-
hf_api.hf_hub_download(repo_id=REPO_ID, filename="chroma_db", local_dir=LOCAL_DB_DIR, repo_type="dataset", token=HF_API_TOKEN)
|
213 |
-
except Exception as e:
|
214 |
-
logger.error(f"Error downloading from Hugging Face Hub: {e}")
|
215 |
else:
|
216 |
-
logger.info("
|
217 |
|
218 |
def upload_to_hf_hub():
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
path_or_fileobj=local_path,
|
228 |
-
path_in_repo=remote_path,
|
229 |
-
repo_id=REPO_ID,
|
230 |
-
repo_type="dataset",
|
231 |
-
token=HF_API_TOKEN
|
232 |
-
)
|
233 |
-
logger.info(f"Database uploaded to: {REPO_ID}")
|
234 |
-
except Exception as e:
|
235 |
-
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
236 |
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
articles = fetch_rss_feeds()
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.docstore.document import Document
|
6 |
import logging
|
7 |
+
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
+
from huggingface_hub.utils import HfHubHTTPError
|
9 |
import json
|
|
|
10 |
import dateutil.parser
|
11 |
import hashlib
|
12 |
import re
|
13 |
+
from datetime import datetime
|
14 |
|
15 |
# Setup logging
|
16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# --- Constants ---
|
20 |
+
# Local and repository configuration
|
21 |
+
LOCAL_DB_DIR = "chroma_db_news" # Using a more descriptive local directory name
|
22 |
FEEDS_FILE = "rss_feeds.json"
|
23 |
COLLECTION_NAME = "news_articles"
|
24 |
+
REPO_ID = "broadfield-dev/news-rag-db" # Your Hugging Face Hub repo ID
|
25 |
+
|
26 |
+
# RSS feed fetching configuration
|
27 |
+
MAX_ARTICLES_PER_FEED = 1000
|
28 |
+
|
29 |
+
# Hugging Face credentials
|
30 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
31 |
+
if not HF_API_TOKEN:
|
32 |
+
raise ValueError("Hugging Face API token not found. Please set the HF_TOKEN environment variable.")
|
33 |
|
34 |
+
# --- Global Initializations ---
|
35 |
# Initialize Hugging Face API
|
36 |
login(token=HF_API_TOKEN)
|
37 |
hf_api = HfApi()
|
38 |
|
39 |
+
# Initialize embedding model once to be reused
|
40 |
+
logger.info("Loading embedding model...")
|
41 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
42 |
+
logger.info("Embedding model loaded.")
|
43 |
|
44 |
+
|
45 |
+
def setup_local_db():
|
46 |
+
"""
|
47 |
+
Ensures the local database directory exists.
|
48 |
+
If it doesn't, it attempts to download from Hugging Face Hub.
|
49 |
+
If the Hub repo is empty or doesn't exist, it creates a new local directory.
|
50 |
+
This function handles the "build a new dataset if one does not exist" requirement.
|
51 |
+
"""
|
52 |
+
if os.path.exists(LOCAL_DB_DIR):
|
53 |
+
logger.info(f"Local database found at '{LOCAL_DB_DIR}'.")
|
54 |
+
return
|
55 |
+
|
56 |
+
logger.info(f"Local database not found. Attempting to download from Hugging Face Hub repo: {REPO_ID}")
|
57 |
+
try:
|
58 |
+
# snapshot_download is the correct function for downloading a whole repository/folder
|
59 |
+
snapshot_download(
|
60 |
+
repo_id=REPO_ID,
|
61 |
+
repo_type="dataset",
|
62 |
+
local_dir=LOCAL_DB_DIR,
|
63 |
+
token=HF_API_TOKEN,
|
64 |
+
)
|
65 |
+
logger.info(f"Database downloaded successfully from {REPO_ID} to {LOCAL_DB_DIR}.")
|
66 |
+
except HfHubHTTPError as e:
|
67 |
+
# This error (e.g., 404 Not Found) is expected if the repo is new or empty.
|
68 |
+
logger.warning(
|
69 |
+
f"Failed to download from Hub (Repo might be new or empty): {e}. "
|
70 |
+
f"A new local database will be created at '{LOCAL_DB_DIR}'."
|
71 |
+
)
|
72 |
+
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"An unexpected error occurred during DB download: {e}")
|
75 |
+
logger.info(f"Creating a new local database at '{LOCAL_DB_DIR}'.")
|
76 |
+
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
|
77 |
|
78 |
def clean_text(text):
|
79 |
"""Clean text by removing HTML tags and extra whitespace."""
|
80 |
if not text or not isinstance(text, str):
|
81 |
return ""
|
82 |
+
# Remove HTML tags
|
83 |
text = re.sub(r'<.*?>', '', text)
|
84 |
+
# Normalize whitespace
|
85 |
text = ' '.join(text.split())
|
86 |
return text.strip().lower()
|
87 |
|
88 |
def fetch_rss_feeds():
|
89 |
+
"""Fetches and parses articles from a list of RSS feeds in a JSON file."""
|
90 |
articles = []
|
91 |
seen_keys = set()
|
92 |
|
|
|
94 |
with open(FEEDS_FILE, 'r') as f:
|
95 |
feed_categories = json.load(f)
|
96 |
except FileNotFoundError:
|
97 |
+
logger.error(f"'{FEEDS_FILE}' not found. Please create it. No feeds to process.")
|
98 |
return []
|
99 |
|
100 |
for category, feeds in feed_categories.items():
|
|
|
108 |
logger.info(f"Fetching {feed_url}")
|
109 |
feed = feedparser.parse(feed_url)
|
110 |
if feed.bozo:
|
111 |
+
logger.warning(f"Feed parsing error for {feed_url}: {feed.bozo_exception}")
|
112 |
continue
|
113 |
+
|
114 |
+
for entry in feed.entries[:MAX_ARTICLES_PER_FEED]:
|
115 |
+
title = clean_text(entry.get("title", "No Title"))
|
116 |
+
link = entry.get("link", "") # Don't clean link URL
|
117 |
+
description = clean_text(entry.get("summary", entry.get("description", "")))
|
|
|
|
|
118 |
|
119 |
+
if not description: # Skip articles without content
|
120 |
+
continue
|
|
|
121 |
|
122 |
published = "Unknown Date"
|
123 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
|
|
126 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
127 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
128 |
break
|
129 |
+
except (ValueError, TypeError):
|
|
|
130 |
continue
|
131 |
|
132 |
+
# Create a unique key to deduplicate articles before processing
|
133 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
134 |
key = f"{title}|{link}|{published}|{description_hash}"
|
135 |
+
|
136 |
if key not in seen_keys:
|
137 |
seen_keys.add(key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
articles.append({
|
139 |
+
"title": entry.get("title", "No Title"),
|
140 |
"link": link,
|
141 |
"description": description,
|
142 |
"published": published,
|
143 |
+
"category": category,
|
|
|
144 |
})
|
|
|
145 |
except Exception as e:
|
146 |
+
logger.error(f"Error fetching or parsing feed {feed_url}: {e}")
|
147 |
+
|
148 |
+
logger.info(f"Total unique articles fetched: {len(articles)}")
|
149 |
return articles
|
150 |
|
151 |
+
def process_and_store_articles(articles, vector_db):
|
152 |
+
"""Processes articles and stores them in the Chroma DB, avoiding duplicates."""
|
153 |
+
new_docs = []
|
154 |
+
new_doc_ids = []
|
155 |
+
|
156 |
+
# Get all existing document IDs from the database once to check for duplicates
|
157 |
+
try:
|
158 |
+
existing_ids = set(vector_db.get(include=[])["ids"])
|
159 |
+
logger.info(f"Found {len(existing_ids)} existing documents in the database.")
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"Could not retrieve existing IDs from DB. Assuming empty. Error: {e}")
|
162 |
+
existing_ids = set()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
|
|
|
|
|
|
164 |
for article in articles:
|
165 |
try:
|
166 |
+
# Recreate the same unique ID format for checking against the DB
|
167 |
title = clean_text(article["title"])
|
168 |
+
link = article["link"]
|
|
|
169 |
published = article["published"]
|
170 |
+
description = article["description"]
|
171 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
172 |
doc_id = f"{title}|{link}|{published}|{description_hash}"
|
173 |
+
|
174 |
if doc_id in existing_ids:
|
175 |
+
logger.debug(f"Skipping duplicate article (ID already in DB): {title[:50]}...")
|
176 |
continue
|
177 |
+
|
178 |
+
# Add to our in-memory set to avoid duplicates from the same batch
|
179 |
+
existing_ids.add(doc_id)
|
180 |
+
|
181 |
metadata = {
|
182 |
"title": article["title"],
|
183 |
"link": article["link"],
|
|
|
184 |
"published": article["published"],
|
185 |
"category": article["category"],
|
186 |
+
# Store original description if needed, or keep it clean
|
187 |
+
# "original_description": article["description"],
|
188 |
}
|
189 |
+
# The Document object itself doesn't take an ID
|
190 |
+
doc = Document(page_content=description, metadata=metadata)
|
191 |
+
new_docs.append(doc)
|
192 |
+
new_doc_ids.append(doc_id)
|
193 |
+
|
194 |
except Exception as e:
|
195 |
+
logger.error(f"Error processing article '{article.get('title', 'N/A')}': {e}")
|
196 |
|
197 |
+
if new_docs:
|
198 |
+
logger.info(f"Adding {len(new_docs)} new documents to the database...")
|
199 |
try:
|
200 |
+
# Provide the list of documents and a parallel list of their unique IDs
|
201 |
+
vector_db.add_documents(documents=new_docs, ids=new_doc_ids)
|
202 |
+
vector_db.persist() # Save changes to disk
|
203 |
+
logger.info("Successfully added new documents and persisted the database.")
|
204 |
except Exception as e:
|
205 |
+
logger.error(f"Failed to add documents to Chroma DB: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
else:
|
207 |
+
logger.info("No new articles to add to the database.")
|
208 |
|
209 |
def upload_to_hf_hub():
|
210 |
+
"""Uploads the local Chroma DB directory to the Hugging Face Hub."""
|
211 |
+
if not os.path.exists(LOCAL_DB_DIR):
|
212 |
+
logger.warning(f"Local database directory '{LOCAL_DB_DIR}' not found. Nothing to upload.")
|
213 |
+
return
|
214 |
+
|
215 |
+
try:
|
216 |
+
# Ensure the repo exists before uploading.
|
217 |
+
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
logger.info(f"Uploading database from '{LOCAL_DB_DIR}' to Hugging Face repo: {REPO_ID}...")
|
220 |
+
# upload_folder is the recommended way to upload a directory's contents.
|
221 |
+
hf_api.upload_folder(
|
222 |
+
folder_path=LOCAL_DB_DIR,
|
223 |
+
repo_id=REPO_ID,
|
224 |
+
repo_type="dataset",
|
225 |
+
commit_message=f"Update database - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
226 |
+
)
|
227 |
+
logger.info(f"Database successfully uploaded to {REPO_ID}.")
|
228 |
+
except Exception as e:
|
229 |
+
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
230 |
+
|
231 |
+
|
232 |
+
def main():
|
233 |
+
"""Main execution function to run the data pipeline."""
|
234 |
+
# 1. Ensure local DB exists by downloading from Hub or creating a new one
|
235 |
+
setup_local_db()
|
236 |
+
|
237 |
+
# 2. Initialize the vector DB object *after* the directory is guaranteed to exist
|
238 |
+
logger.info("Initializing Chroma vector database...")
|
239 |
+
vector_db = Chroma(
|
240 |
+
persist_directory=LOCAL_DB_DIR,
|
241 |
+
embedding_function=embedding_model,
|
242 |
+
collection_name=COLLECTION_NAME
|
243 |
+
)
|
244 |
+
logger.info("Chroma DB initialized.")
|
245 |
+
|
246 |
+
# 3. Fetch new articles from RSS feeds
|
247 |
articles = fetch_rss_feeds()
|
248 |
+
|
249 |
+
# 4. Process new articles and add them to the DB
|
250 |
+
if articles:
|
251 |
+
process_and_store_articles(articles, vector_db)
|
252 |
+
|
253 |
+
# 5. Upload the potentially updated database back to the Hub
|
254 |
+
upload_to_hf_hub()
|
255 |
+
|
256 |
+
logger.info("Script finished.")
|
257 |
+
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
main()
|