Spaces:
Sleeping
Sleeping
Update rss_processor.py
Browse files- rss_processor.py +66 -49
rss_processor.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
-
# rss_processor.py
|
2 |
import os
|
3 |
import feedparser
|
4 |
from langchain.vectorstores import Chroma
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.docstore.document import Document
|
7 |
import logging
|
8 |
-
from huggingface_hub import HfApi, login
|
9 |
import shutil
|
10 |
import rss_feeds
|
11 |
-
from datetime import datetime
|
12 |
import dateutil.parser
|
13 |
import hashlib
|
14 |
import re
|
@@ -19,7 +18,6 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
# Constants
|
21 |
MAX_ARTICLES_PER_FEED = 10
|
22 |
-
LOCAL_DB_DIR = "chroma_db"
|
23 |
RSS_FEEDS = rss_feeds.RSS_FEEDS
|
24 |
COLLECTION_NAME = "news_articles"
|
25 |
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
@@ -29,15 +27,15 @@ REPO_ID = "broadfield-dev/news-rag-db"
|
|
29 |
login(token=HF_API_TOKEN)
|
30 |
hf_api = HfApi()
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
embedding_function=embedding_model,
|
39 |
-
collection_name=COLLECTION_NAME
|
40 |
-
)
|
41 |
|
42 |
def clean_text(text):
|
43 |
"""Clean text by removing HTML tags and extra whitespace."""
|
@@ -119,9 +117,9 @@ def categorize_feed(url):
|
|
119 |
logger.warning(f"Invalid URL provided for categorization: {url}")
|
120 |
return "Uncategorized"
|
121 |
|
122 |
-
url = url.lower().strip()
|
123 |
|
124 |
-
logger.debug(f"Categorizing URL: {url}")
|
125 |
|
126 |
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
|
127 |
return "Academic Papers"
|
@@ -156,8 +154,21 @@ def categorize_feed(url):
|
|
156 |
return "Uncategorized"
|
157 |
|
158 |
def process_and_store_articles(articles):
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
for article in articles:
|
162 |
try:
|
163 |
title = clean_text(article["title"])
|
@@ -165,10 +176,13 @@ def process_and_store_articles(articles):
|
|
165 |
description = clean_text(article["description"])
|
166 |
published = article["published"]
|
167 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
|
|
168 |
doc_id = f"{title}|{link}|{published}|{description_hash}"
|
|
|
169 |
if doc_id in existing_ids:
|
170 |
-
logger.debug(f"Skipping duplicate in DB: {doc_id}")
|
171 |
continue
|
|
|
172 |
metadata = {
|
173 |
"title": article["title"],
|
174 |
"link": article["link"],
|
@@ -177,52 +191,55 @@ def process_and_store_articles(articles):
|
|
177 |
"category": article["category"],
|
178 |
"image": article["image"],
|
179 |
}
|
180 |
-
doc = Document(page_content=description, metadata=metadata
|
181 |
-
|
182 |
-
|
|
|
183 |
except Exception as e:
|
184 |
-
logger.error(f"Error processing article {article
|
185 |
|
186 |
-
if
|
187 |
try:
|
188 |
-
vector_db.add_documents(documents)
|
189 |
vector_db.persist()
|
190 |
-
logger.info(f"Added {len(
|
191 |
except Exception as e:
|
192 |
-
logger.error(f"Error storing articles: {e}")
|
193 |
|
194 |
def download_from_hf_hub():
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
def upload_to_hf_hub():
|
206 |
-
|
|
|
207 |
try:
|
208 |
-
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
repo_type="dataset",
|
218 |
-
token=HF_API_TOKEN
|
219 |
-
)
|
220 |
-
logger.info(f"Database uploaded to: {REPO_ID}")
|
221 |
except Exception as e:
|
222 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
-
download_from_hf_hub()
|
226 |
articles = fetch_rss_feeds()
|
227 |
process_and_store_articles(articles)
|
228 |
upload_to_hf_hub()
|
|
|
|
|
1 |
import os
|
2 |
import feedparser
|
3 |
from langchain.vectorstores import Chroma
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.docstore.document import Document
|
6 |
import logging
|
7 |
+
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
import shutil
|
9 |
import rss_feeds
|
10 |
+
from datetime import datetime, date
|
11 |
import dateutil.parser
|
12 |
import hashlib
|
13 |
import re
|
|
|
18 |
|
19 |
# Constants
|
20 |
MAX_ARTICLES_PER_FEED = 10
|
|
|
21 |
RSS_FEEDS = rss_feeds.RSS_FEEDS
|
22 |
COLLECTION_NAME = "news_articles"
|
23 |
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
|
|
27 |
login(token=HF_API_TOKEN)
|
28 |
hf_api = HfApi()
|
29 |
|
30 |
+
def get_embedding_model():
|
31 |
+
"""Returns a singleton instance of the embedding model to avoid reloading."""
|
32 |
+
if not hasattr(get_embedding_model, "model"):
|
33 |
+
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
34 |
+
return get_embedding_model.model
|
35 |
|
36 |
+
def get_daily_db_dir():
|
37 |
+
"""Returns the path for today's Chroma DB."""
|
38 |
+
return f"chroma_db_{date.today().isoformat()}"
|
|
|
|
|
|
|
39 |
|
40 |
def clean_text(text):
|
41 |
"""Clean text by removing HTML tags and extra whitespace."""
|
|
|
117 |
logger.warning(f"Invalid URL provided for categorization: {url}")
|
118 |
return "Uncategorized"
|
119 |
|
120 |
+
url = url.lower().strip()
|
121 |
|
122 |
+
logger.debug(f"Categorizing URL: {url}")
|
123 |
|
124 |
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
|
125 |
return "Academic Papers"
|
|
|
154 |
return "Uncategorized"
|
155 |
|
156 |
def process_and_store_articles(articles):
|
157 |
+
db_path = get_daily_db_dir()
|
158 |
+
vector_db = Chroma(
|
159 |
+
persist_directory=db_path,
|
160 |
+
embedding_function=get_embedding_model(),
|
161 |
+
collection_name=COLLECTION_NAME
|
162 |
+
)
|
163 |
+
|
164 |
+
try:
|
165 |
+
existing_ids = set(vector_db.get(include=[])["ids"])
|
166 |
+
except Exception:
|
167 |
+
existing_ids = set()
|
168 |
+
|
169 |
+
docs_to_add = []
|
170 |
+
ids_to_add = []
|
171 |
+
|
172 |
for article in articles:
|
173 |
try:
|
174 |
title = clean_text(article["title"])
|
|
|
176 |
description = clean_text(article["description"])
|
177 |
published = article["published"]
|
178 |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
179 |
+
|
180 |
doc_id = f"{title}|{link}|{published}|{description_hash}"
|
181 |
+
|
182 |
if doc_id in existing_ids:
|
183 |
+
logger.debug(f"Skipping duplicate in DB {db_path}: {doc_id}")
|
184 |
continue
|
185 |
+
|
186 |
metadata = {
|
187 |
"title": article["title"],
|
188 |
"link": article["link"],
|
|
|
191 |
"category": article["category"],
|
192 |
"image": article["image"],
|
193 |
}
|
194 |
+
doc = Document(page_content=description, metadata=metadata)
|
195 |
+
docs_to_add.append(doc)
|
196 |
+
ids_to_add.append(doc_id)
|
197 |
+
existing_ids.add(doc_id)
|
198 |
except Exception as e:
|
199 |
+
logger.error(f"Error processing article {article.get('title', 'N/A')}: {e}")
|
200 |
|
201 |
+
if docs_to_add:
|
202 |
try:
|
203 |
+
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
|
204 |
vector_db.persist()
|
205 |
+
logger.info(f"Added {len(docs_to_add)} new articles to DB {db_path}. Total in DB: {vector_db._collection.count()}")
|
206 |
except Exception as e:
|
207 |
+
logger.error(f"Error storing articles in {db_path}: {e}")
|
208 |
|
209 |
def download_from_hf_hub():
|
210 |
+
try:
|
211 |
+
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
|
212 |
+
logger.info(f"Downloading all DBs from {REPO_ID}...")
|
213 |
+
snapshot_download(
|
214 |
+
repo_id=REPO_ID,
|
215 |
+
repo_type="dataset",
|
216 |
+
local_dir=".",
|
217 |
+
local_dir_use_symlinks=False,
|
218 |
+
allow_patterns="chroma_db_*/**",
|
219 |
+
token=HF_API_TOKEN
|
220 |
+
)
|
221 |
+
logger.info("Finished downloading DBs.")
|
222 |
+
except Exception as e:
|
223 |
+
logger.error(f"Error downloading from Hugging Face Hub: {e}")
|
224 |
|
225 |
def upload_to_hf_hub():
|
226 |
+
db_path = get_daily_db_dir()
|
227 |
+
if os.path.exists(db_path):
|
228 |
try:
|
229 |
+
logger.info(f"Uploading updated Chroma DB '{db_path}' to {REPO_ID}...")
|
230 |
+
hf_api.upload_folder(
|
231 |
+
folder_path=db_path,
|
232 |
+
path_in_repo=db_path,
|
233 |
+
repo_id=REPO_ID,
|
234 |
+
repo_type="dataset",
|
235 |
+
token=HF_API_TOKEN
|
236 |
+
)
|
237 |
+
logger.info(f"Database folder '{db_path}' uploaded to: {REPO_ID}")
|
|
|
|
|
|
|
|
|
238 |
except Exception as e:
|
239 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
240 |
|
241 |
if __name__ == "__main__":
|
242 |
+
download_from_hf_hub()
|
243 |
articles = fetch_rss_feeds()
|
244 |
process_and_store_articles(articles)
|
245 |
upload_to_hf_hub()
|