Spaces:
Sleeping
Sleeping
Update rss_processor.py
Browse files- rss_processor.py +100 -121
rss_processor.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
import os
|
2 |
import feedparser
|
3 |
from chromadb import PersistentClient
|
4 |
-
from
|
5 |
-
from
|
6 |
import logging
|
7 |
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
-
import shutil
|
9 |
-
import rss_feeds
|
10 |
from datetime import datetime
|
11 |
import dateutil.parser
|
12 |
import hashlib
|
13 |
import json
|
14 |
import re
|
15 |
|
16 |
-
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
LOCAL_DB_DIR = "chroma_db"
|
@@ -22,8 +20,17 @@ COLLECTION_NAME = "news_articles"
|
|
22 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
23 |
REPO_ID = "broadfield-dev/news-rag-db"
|
24 |
MAX_ARTICLES_PER_FEED = 1000
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def get_embedding_model():
|
29 |
if not hasattr(get_embedding_model, "model"):
|
@@ -35,11 +42,10 @@ def clean_text(text):
|
|
35 |
return ""
|
36 |
text = re.sub(r'<.*?>', '', text)
|
37 |
text = ' '.join(text.split())
|
38 |
-
return text.strip()
|
39 |
|
40 |
def fetch_rss_feeds():
|
41 |
articles = []
|
42 |
-
seen_keys = set()
|
43 |
|
44 |
try:
|
45 |
with open(FEEDS_FILE, 'r') as f:
|
@@ -61,104 +67,56 @@ def fetch_rss_feeds():
|
|
61 |
if feed.bozo:
|
62 |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
|
63 |
continue
|
64 |
-
|
65 |
-
for entry in feed.entries:
|
66 |
-
|
67 |
-
break
|
68 |
-
|
69 |
-
title_raw = entry.get("title", "No Title")
|
70 |
link = entry.get("link", "")
|
71 |
-
|
72 |
-
|
73 |
-
clean_title_val = clean_text(title_raw)
|
74 |
-
clean_desc_val = clean_text(description)
|
75 |
|
76 |
-
if not
|
77 |
continue
|
78 |
|
79 |
-
|
80 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
81 |
if date_field in entry:
|
82 |
try:
|
83 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
84 |
-
|
85 |
break
|
86 |
except (ValueError, TypeError):
|
87 |
continue
|
88 |
-
|
89 |
-
description_hash = hashlib.sha256(clean_desc_val.encode('utf-8')).hexdigest()
|
90 |
-
key = f"{clean_title_val}|{link}|{published}|{description_hash}"
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
"image": image,
|
117 |
-
})
|
118 |
-
article_count += 1
|
119 |
except Exception as e:
|
120 |
-
logger.error(f"Error fetching {feed_url}: {e}")
|
121 |
-
|
|
|
122 |
return articles
|
123 |
|
124 |
-
def categorize_feed(url):
|
125 |
-
if not url or not isinstance(url, str):
|
126 |
-
logger.warning(f"Invalid URL provided for categorization: {url}")
|
127 |
-
return "Uncategorized"
|
128 |
-
url = url.lower().strip()
|
129 |
-
logger.debug(f"Categorizing URL: {url}")
|
130 |
-
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
|
131 |
-
return "Academic Papers"
|
132 |
-
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
|
133 |
-
return "Business"
|
134 |
-
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
|
135 |
-
return "Stocks & Markets"
|
136 |
-
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
|
137 |
-
return "Federal Government"
|
138 |
-
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
|
139 |
-
return "Weather"
|
140 |
-
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
|
141 |
-
return "Data & Statistics"
|
142 |
-
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
|
143 |
-
return "Space"
|
144 |
-
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
|
145 |
-
return "Science"
|
146 |
-
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
|
147 |
-
return "Tech"
|
148 |
-
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
|
149 |
-
return "Astrology"
|
150 |
-
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
|
151 |
-
return "Politics"
|
152 |
-
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
|
153 |
-
return "Earth Weather"
|
154 |
-
elif "vogue" in url:
|
155 |
-
return "Lifestyle"
|
156 |
-
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
|
157 |
-
return "Physics"
|
158 |
-
else:
|
159 |
-
logger.warning(f"No matching category found for URL: {url}")
|
160 |
-
return "Uncategorized"
|
161 |
-
|
162 |
def process_and_store_articles(articles):
|
163 |
if not os.path.exists(LOCAL_DB_DIR):
|
164 |
os.makedirs(LOCAL_DB_DIR)
|
@@ -169,17 +127,19 @@ def process_and_store_articles(articles):
|
|
169 |
try:
|
170 |
existing_ids = set(collection.get(include=[])["ids"])
|
171 |
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
|
172 |
-
except Exception
|
173 |
-
logger.info(
|
174 |
existing_ids = set()
|
175 |
|
176 |
-
|
|
|
177 |
ids_to_add = []
|
178 |
-
|
179 |
for article in articles:
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
183 |
|
184 |
if doc_id in existing_ids:
|
185 |
continue
|
@@ -187,32 +147,35 @@ def process_and_store_articles(articles):
|
|
187 |
metadata = {
|
188 |
"title": article["title"],
|
189 |
"link": article["link"],
|
190 |
-
"original_description": article["description"],
|
191 |
"published": article["published"],
|
192 |
"category": article["category"],
|
193 |
"image": article["image"],
|
194 |
}
|
195 |
-
|
196 |
-
|
|
|
197 |
ids_to_add.append(doc_id)
|
198 |
|
199 |
-
if
|
|
|
200 |
try:
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
logger.info(f"
|
211 |
except Exception as e:
|
212 |
-
logger.error(f"Error storing articles: {e}")
|
|
|
|
|
213 |
|
214 |
def download_from_hf_hub():
|
215 |
-
if not os.path.exists(LOCAL_DB_DIR):
|
216 |
try:
|
217 |
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
|
218 |
snapshot_download(
|
@@ -220,16 +183,16 @@ def download_from_hf_hub():
|
|
220 |
repo_type="dataset",
|
221 |
local_dir=".",
|
222 |
local_dir_use_symlinks=False,
|
223 |
-
allow_patterns=f"{LOCAL_DB_DIR}/**",
|
224 |
token=HF_API_TOKEN
|
225 |
)
|
226 |
logger.info("Finished downloading DB.")
|
227 |
except Exception as e:
|
228 |
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
|
229 |
else:
|
230 |
-
logger.info("Local Chroma DB
|
231 |
|
232 |
-
def upload_to_hf_hub():
|
233 |
if os.path.exists(LOCAL_DB_DIR):
|
234 |
try:
|
235 |
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
|
@@ -238,9 +201,25 @@ def upload_to_hf_hub():
|
|
238 |
path_in_repo=LOCAL_DB_DIR,
|
239 |
repo_id=REPO_ID,
|
240 |
repo_type="dataset",
|
241 |
-
|
242 |
-
|
243 |
)
|
244 |
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
|
245 |
except Exception as e:
|
246 |
-
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import feedparser
|
3 |
from chromadb import PersistentClient
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain_core.documents import Document
|
6 |
import logging
|
7 |
from huggingface_hub import HfApi, login, snapshot_download
|
|
|
|
|
8 |
from datetime import datetime
|
9 |
import dateutil.parser
|
10 |
import hashlib
|
11 |
import json
|
12 |
import re
|
13 |
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
LOCAL_DB_DIR = "chroma_db"
|
|
|
20 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
21 |
REPO_ID = "broadfield-dev/news-rag-db"
|
22 |
MAX_ARTICLES_PER_FEED = 1000
|
23 |
+
|
24 |
+
def initialize_hf_api():
|
25 |
+
if not HF_API_TOKEN:
|
26 |
+
logger.error("Hugging Face API token (HF_TOKEN) not set.")
|
27 |
+
raise ValueError("HF_TOKEN environment variable is not set.")
|
28 |
+
try:
|
29 |
+
login(token=HF_API_TOKEN)
|
30 |
+
return HfApi()
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Failed to login to Hugging Face Hub: {e}")
|
33 |
+
raise
|
34 |
|
35 |
def get_embedding_model():
|
36 |
if not hasattr(get_embedding_model, "model"):
|
|
|
42 |
return ""
|
43 |
text = re.sub(r'<.*?>', '', text)
|
44 |
text = ' '.join(text.split())
|
45 |
+
return text.strip()
|
46 |
|
47 |
def fetch_rss_feeds():
|
48 |
articles = []
|
|
|
49 |
|
50 |
try:
|
51 |
with open(FEEDS_FILE, 'r') as f:
|
|
|
67 |
if feed.bozo:
|
68 |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
|
69 |
continue
|
70 |
+
|
71 |
+
for entry in feed.entries[:MAX_ARTICLES_PER_FEED]:
|
72 |
+
title = entry.get("title", "No Title")
|
|
|
|
|
|
|
73 |
link = entry.get("link", "")
|
74 |
+
description_raw = entry.get("summary", entry.get("description", ""))
|
75 |
+
description = clean_text(description_raw)
|
|
|
|
|
76 |
|
77 |
+
if not description:
|
78 |
continue
|
79 |
|
80 |
+
published_str = "Unknown Date"
|
81 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
82 |
if date_field in entry:
|
83 |
try:
|
84 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
85 |
+
published_str = parsed_date.isoformat()
|
86 |
break
|
87 |
except (ValueError, TypeError):
|
88 |
continue
|
|
|
|
|
|
|
89 |
|
90 |
+
image = "svg"
|
91 |
+
image_sources = [
|
92 |
+
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else None,
|
93 |
+
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else None,
|
94 |
+
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") and e.get("enclosure", {}).get('type', '').startswith('image') else None,
|
95 |
+
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), None),
|
96 |
+
]
|
97 |
+
for source_func in image_sources:
|
98 |
+
try:
|
99 |
+
img_url = source_func(entry)
|
100 |
+
if img_url and isinstance(img_url, str) and img_url.strip():
|
101 |
+
image = img_url
|
102 |
+
break
|
103 |
+
except (IndexError, AttributeError, TypeError):
|
104 |
+
continue
|
105 |
+
|
106 |
+
articles.append({
|
107 |
+
"title": title,
|
108 |
+
"link": link,
|
109 |
+
"description": description,
|
110 |
+
"published": published_str,
|
111 |
+
"category": category,
|
112 |
+
"image": image,
|
113 |
+
})
|
|
|
|
|
|
|
114 |
except Exception as e:
|
115 |
+
logger.error(f"Error fetching or parsing {feed_url}: {e}")
|
116 |
+
|
117 |
+
logger.info(f"Total articles fetched: {len(articles)}")
|
118 |
return articles
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def process_and_store_articles(articles):
|
121 |
if not os.path.exists(LOCAL_DB_DIR):
|
122 |
os.makedirs(LOCAL_DB_DIR)
|
|
|
127 |
try:
|
128 |
existing_ids = set(collection.get(include=[])["ids"])
|
129 |
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
|
130 |
+
except Exception:
|
131 |
+
logger.info("No existing DB found or it is empty. Starting fresh.")
|
132 |
existing_ids = set()
|
133 |
|
134 |
+
contents_to_add = []
|
135 |
+
metadatas_to_add = []
|
136 |
ids_to_add = []
|
137 |
+
|
138 |
for article in articles:
|
139 |
+
if not article.get('link'):
|
140 |
+
continue
|
141 |
+
|
142 |
+
doc_id = hashlib.sha256(article['link'].encode('utf-8')).hexdigest()
|
143 |
|
144 |
if doc_id in existing_ids:
|
145 |
continue
|
|
|
147 |
metadata = {
|
148 |
"title": article["title"],
|
149 |
"link": article["link"],
|
|
|
150 |
"published": article["published"],
|
151 |
"category": article["category"],
|
152 |
"image": article["image"],
|
153 |
}
|
154 |
+
|
155 |
+
contents_to_add.append(article["description"])
|
156 |
+
metadatas_to_add.append(metadata)
|
157 |
ids_to_add.append(doc_id)
|
158 |
|
159 |
+
if ids_to_add:
|
160 |
+
logger.info(f"Found {len(ids_to_add)} new articles to add to the database.")
|
161 |
try:
|
162 |
+
embedding_model = get_embedding_model()
|
163 |
+
embeddings_to_add = embedding_model.embed_documents(contents_to_add)
|
164 |
+
|
165 |
+
collection.add(
|
166 |
+
embeddings=embeddings_to_add,
|
167 |
+
documents=contents_to_add,
|
168 |
+
metadatas=metadatas_to_add,
|
169 |
+
ids=ids_to_add
|
170 |
+
)
|
171 |
+
logger.info(f"Successfully added {len(ids_to_add)} new articles to DB. Total in DB: {collection.count()}")
|
172 |
except Exception as e:
|
173 |
+
logger.error(f"Error storing articles in ChromaDB: {e}", exc_info=True)
|
174 |
+
else:
|
175 |
+
logger.info("No new articles to add to the database.")
|
176 |
|
177 |
def download_from_hf_hub():
|
178 |
+
if not os.path.exists(os.path.join(LOCAL_DB_DIR, "chroma.sqlite3")):
|
179 |
try:
|
180 |
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
|
181 |
snapshot_download(
|
|
|
183 |
repo_type="dataset",
|
184 |
local_dir=".",
|
185 |
local_dir_use_symlinks=False,
|
186 |
+
allow_patterns=[f"{LOCAL_DB_DIR}/**"],
|
187 |
token=HF_API_TOKEN
|
188 |
)
|
189 |
logger.info("Finished downloading DB.")
|
190 |
except Exception as e:
|
191 |
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
|
192 |
else:
|
193 |
+
logger.info(f"Local Chroma DB found at '{LOCAL_DB_DIR}', skipping download.")
|
194 |
|
195 |
+
def upload_to_hf_hub(hf_api):
|
196 |
if os.path.exists(LOCAL_DB_DIR):
|
197 |
try:
|
198 |
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
|
|
|
201 |
path_in_repo=LOCAL_DB_DIR,
|
202 |
repo_id=REPO_ID,
|
203 |
repo_type="dataset",
|
204 |
+
commit_message=f"Update RSS news database {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
|
205 |
+
ignore_patterns=["*.bak", "*.tmp"]
|
206 |
)
|
207 |
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
|
208 |
except Exception as e:
|
209 |
+
logger.error(f"Error uploading to Hugging Face Hub: {e}", exc_info=True)
|
210 |
+
|
211 |
+
def main():
|
212 |
+
try:
|
213 |
+
hf_api = initialize_hf_api()
|
214 |
+
download_from_hf_hub()
|
215 |
+
articles_to_process = fetch_rss_feeds()
|
216 |
+
if articles_to_process:
|
217 |
+
process_and_store_articles(articles_to_process)
|
218 |
+
upload_to_hf_hub(hf_api)
|
219 |
+
else:
|
220 |
+
logger.info("No articles fetched, skipping database processing and upload.")
|
221 |
+
except Exception as e:
|
222 |
+
logger.critical(f"An unhandled error occurred in main execution: {e}", exc_info=True)
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
main()
|