Spaces:
Sleeping
Sleeping
Update rss_processor.py
Browse files- rss_processor.py +142 -81
rss_processor.py
CHANGED
@@ -4,7 +4,7 @@ from langchain.vectorstores import Chroma
|
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.docstore.document import Document
|
6 |
import logging
|
7 |
-
from huggingface_hub import HfApi, login
|
8 |
import shutil
|
9 |
import json
|
10 |
from datetime import datetime
|
@@ -12,24 +12,34 @@ import dateutil.parser
|
|
12 |
import hashlib
|
13 |
import re
|
14 |
|
|
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
|
|
|
|
18 |
LOCAL_DB_DIR = "chroma_db"
|
|
|
19 |
COLLECTION_NAME = "news_articles"
|
20 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
21 |
REPO_ID = "broadfield-dev/news-rag-db"
|
22 |
-
FEEDS_FILE = "rss_feeds.json"
|
23 |
|
|
|
24 |
login(token=HF_API_TOKEN)
|
25 |
hf_api = HfApi()
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def clean_text(text):
|
|
|
33 |
if not text or not isinstance(text, str):
|
34 |
return ""
|
35 |
text = re.sub(r'<.*?>', '', text)
|
@@ -51,25 +61,27 @@ def fetch_rss_feeds():
|
|
51 |
for feed_info in feeds:
|
52 |
feed_url = feed_info.get("url")
|
53 |
if not feed_url:
|
|
|
54 |
continue
|
55 |
|
56 |
try:
|
57 |
-
logger.info(f"Fetching
|
58 |
-
|
59 |
-
feed = feedparser.parse(feed_url, agent="RSSNewsBot/1.0 (+http://huggingface.co/spaces/broadfield-dev/RSS_News)")
|
60 |
-
|
61 |
if feed.bozo:
|
62 |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
|
63 |
continue
|
64 |
-
|
65 |
-
for entry in feed.entries
|
|
|
|
|
66 |
title = entry.get("title", "No Title")
|
67 |
link = entry.get("link", "")
|
68 |
description = entry.get("summary", entry.get("description", ""))
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
published = "Unknown Date"
|
74 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
75 |
if date_field in entry:
|
@@ -77,104 +89,153 @@ def fetch_rss_feeds():
|
|
77 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
78 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
79 |
break
|
80 |
-
except (ValueError, TypeError):
|
|
|
81 |
continue
|
82 |
|
83 |
-
|
|
|
84 |
if key not in seen_keys:
|
85 |
seen_keys.add(key)
|
86 |
image = "svg"
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
articles.append({
|
93 |
"title": title,
|
94 |
"link": link,
|
95 |
"description": description,
|
96 |
"published": published,
|
97 |
-
"category": category,
|
98 |
"image": image,
|
99 |
})
|
|
|
100 |
except Exception as e:
|
101 |
logger.error(f"Error fetching {feed_url}: {e}")
|
102 |
-
|
103 |
logger.info(f"Total articles fetched: {len(articles)}")
|
104 |
return articles
|
105 |
|
106 |
-
def
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
for article in articles:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
if
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
def download_from_hf_hub():
|
148 |
if not os.path.exists(LOCAL_DB_DIR):
|
149 |
try:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
local_dir=".",
|
154 |
-
local_dir_use_symlinks=False,
|
155 |
-
allow_patterns=f"{LOCAL_DB_DIR}/**",
|
156 |
-
token=HF_API_TOKEN
|
157 |
-
)
|
158 |
except Exception as e:
|
159 |
-
logger.
|
|
|
|
|
160 |
|
161 |
def upload_to_hf_hub():
|
162 |
if os.path.exists(LOCAL_DB_DIR):
|
163 |
try:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
except Exception as e:
|
173 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
-
download_from_hf_hub()
|
177 |
articles = fetch_rss_feeds()
|
178 |
-
|
179 |
-
|
180 |
-
upload_to_hf_hub()
|
|
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.docstore.document import Document
|
6 |
import logging
|
7 |
+
from huggingface_hub import HfApi, login
|
8 |
import shutil
|
9 |
import json
|
10 |
from datetime import datetime
|
|
|
12 |
import hashlib
|
13 |
import re
|
14 |
|
15 |
+
# Setup logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# Constants
|
20 |
+
MAX_ARTICLES_PER_FEED = 10
|
21 |
LOCAL_DB_DIR = "chroma_db"
|
22 |
+
FEEDS_FILE = "rss_feeds.json"
|
23 |
COLLECTION_NAME = "news_articles"
|
24 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
25 |
REPO_ID = "broadfield-dev/news-rag-db"
|
|
|
26 |
|
27 |
+
# Initialize Hugging Face API
|
28 |
login(token=HF_API_TOKEN)
|
29 |
hf_api = HfApi()
|
30 |
|
31 |
+
# Initialize embedding model (global, reusable)
|
32 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
33 |
+
|
34 |
+
# Initialize vector DB with a specific collection name
|
35 |
+
vector_db = Chroma(
|
36 |
+
persist_directory=LOCAL_DB_DIR,
|
37 |
+
embedding_function=embedding_model,
|
38 |
+
collection_name=COLLECTION_NAME
|
39 |
+
)
|
40 |
|
41 |
def clean_text(text):
|
42 |
+
"""Clean text by removing HTML tags and extra whitespace."""
|
43 |
if not text or not isinstance(text, str):
|
44 |
return ""
|
45 |
text = re.sub(r'<.*?>', '', text)
|
|
|
61 |
for feed_info in feeds:
|
62 |
feed_url = feed_info.get("url")
|
63 |
if not feed_url:
|
64 |
+
logger.warning(f"Skipping feed with no URL in category '{category}'")
|
65 |
continue
|
66 |
|
67 |
try:
|
68 |
+
logger.info(f"Fetching {feed_url}")
|
69 |
+
feed = feedparser.parse(feed_url)
|
|
|
|
|
70 |
if feed.bozo:
|
71 |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
|
72 |
continue
|
73 |
+
article_count = 0
|
74 |
+
for entry in feed.entries:
|
75 |
+
if article_count >= MAX_ARTICLES_PER_FEED:
|
76 |
+
break
|
77 |
title = entry.get("title", "No Title")
|
78 |
link = entry.get("link", "")
|
79 |
description = entry.get("summary", entry.get("description", ""))
|
80 |
|
81 |
+
title = clean_text(title)
|
82 |
+
link = clean_text(link)
|
83 |
+
description = clean_text(description)
|
84 |
+
|
85 |
published = "Unknown Date"
|
86 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
87 |
if date_field in entry:
|
|
|
89 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
90 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
91 |
break
|
92 |
+
except (ValueError, TypeError) as e:
|
93 |
+
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
|
94 |
continue
|
95 |
|
96 |
+
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
97 |
+
key = f"{title}|{link}|{published}|{description_hash}"
|
98 |
if key not in seen_keys:
|
99 |
seen_keys.add(key)
|
100 |
image = "svg"
|
101 |
+
for img_source in [
|
102 |
+
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
|
103 |
+
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
|
104 |
+
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
|
105 |
+
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
|
106 |
+
]:
|
107 |
+
try:
|
108 |
+
img = img_source(entry)
|
109 |
+
if img and img.strip():
|
110 |
+
image = img
|
111 |
+
break
|
112 |
+
except (IndexError, AttributeError, TypeError):
|
113 |
+
continue
|
114 |
|
115 |
articles.append({
|
116 |
"title": title,
|
117 |
"link": link,
|
118 |
"description": description,
|
119 |
"published": published,
|
120 |
+
"category": category, # Use JSON category directly
|
121 |
"image": image,
|
122 |
})
|
123 |
+
article_count += 1
|
124 |
except Exception as e:
|
125 |
logger.error(f"Error fetching {feed_url}: {e}")
|
|
|
126 |
logger.info(f"Total articles fetched: {len(articles)}")
|
127 |
return articles
|
128 |
|
129 |
+
def categorize_feed(url):
|
130 |
+
"""Categorize an RSS feed based on its URL."""
|
131 |
+
if not url or not isinstance(url, str):
|
132 |
+
logger.warning(f"Invalid URL provided for categorization: {url}")
|
133 |
+
return "Uncategorized"
|
134 |
+
|
135 |
+
url = url.lower().strip() # Normalize the URL
|
136 |
+
|
137 |
+
logger.debug(f"Categorizing URL: {url}") # Add debugging for visibility
|
138 |
+
|
139 |
+
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
|
140 |
+
return "Academic Papers"
|
141 |
+
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
|
142 |
+
return "Business"
|
143 |
+
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
|
144 |
+
return "Stocks & Markets"
|
145 |
+
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
|
146 |
+
return "Federal Government"
|
147 |
+
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
|
148 |
+
return "Weather"
|
149 |
+
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
|
150 |
+
return "Data & Statistics"
|
151 |
+
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
|
152 |
+
return "Space"
|
153 |
+
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
|
154 |
+
return "Science"
|
155 |
+
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
|
156 |
+
return "Tech"
|
157 |
+
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
|
158 |
+
return "Astrology"
|
159 |
+
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
|
160 |
+
return "Politics"
|
161 |
+
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
|
162 |
+
return "Earth Weather"
|
163 |
+
elif "vogue" in url:
|
164 |
+
return "Lifestyle"
|
165 |
+
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
|
166 |
+
return "Physics"
|
167 |
+
else:
|
168 |
+
logger.warning(f"No matching category found for URL: {url}")
|
169 |
+
return "Uncategorized"
|
170 |
|
171 |
+
def process_and_store_articles(articles):
|
172 |
+
documents = []
|
173 |
+
existing_ids = set(vector_db.get()["ids"]) # Load existing IDs once
|
174 |
for article in articles:
|
175 |
+
try:
|
176 |
+
title = clean_text(article["title"])
|
177 |
+
link = clean_text(article["link"])
|
178 |
+
description = clean_text(article["description"])
|
179 |
+
published = article["published"]
|
180 |
+
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
181 |
+
doc_id = f"{title}|{link}|{published}|{description_hash}"
|
182 |
+
if doc_id in existing_ids:
|
183 |
+
logger.debug(f"Skipping duplicate in DB: {doc_id}")
|
184 |
+
continue
|
185 |
+
metadata = {
|
186 |
+
"title": article["title"],
|
187 |
+
"link": article["link"],
|
188 |
+
"original_description": article["description"],
|
189 |
+
"published": article["published"],
|
190 |
+
"category": article["category"],
|
191 |
+
"image": article["image"],
|
192 |
+
}
|
193 |
+
doc = Document(page_content=description, metadata=metadata, id=doc_id)
|
194 |
+
documents.append(doc)
|
195 |
+
existing_ids.add(doc_id) # Update in-memory set to avoid duplicates within this batch
|
196 |
+
except Exception as e:
|
197 |
+
logger.error(f"Error processing article {article['title']}: {e}")
|
198 |
|
199 |
+
if documents:
|
200 |
+
try:
|
201 |
+
vector_db.add_documents(documents)
|
202 |
+
vector_db.persist()
|
203 |
+
logger.info(f"Added {len(documents)} new articles to DB. Total documents: {len(vector_db.get()['ids'])}")
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Error storing articles: {e}")
|
206 |
|
207 |
def download_from_hf_hub():
|
208 |
if not os.path.exists(LOCAL_DB_DIR):
|
209 |
try:
|
210 |
+
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
|
211 |
+
logger.info(f"Downloading Chroma DB from {REPO_ID}...")
|
212 |
+
hf_api.hf_hub_download(repo_id=REPO_ID, filename="chroma_db", local_dir=LOCAL_DB_DIR, repo_type="dataset", token=HF_API_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
213 |
except Exception as e:
|
214 |
+
logger.error(f"Error downloading from Hugging Face Hub: {e}")
|
215 |
+
else:
|
216 |
+
logger.info("Local Chroma DB exists, loading existing data.")
|
217 |
|
218 |
def upload_to_hf_hub():
|
219 |
if os.path.exists(LOCAL_DB_DIR):
|
220 |
try:
|
221 |
+
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
|
222 |
+
for root, _, files in os.walk(LOCAL_DB_DIR):
|
223 |
+
for file in files:
|
224 |
+
local_path = os.path.join(root, file)
|
225 |
+
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
|
226 |
+
hf_api.upload_file(
|
227 |
+
path_or_fileobj=local_path,
|
228 |
+
path_in_repo=remote_path,
|
229 |
+
repo_id=REPO_ID,
|
230 |
+
repo_type="dataset",
|
231 |
+
token=HF_API_TOKEN
|
232 |
+
)
|
233 |
+
logger.info(f"Database uploaded to: {REPO_ID}")
|
234 |
except Exception as e:
|
235 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
236 |
|
237 |
if __name__ == "__main__":
|
238 |
+
download_from_hf_hub() # Ensure DB is initialized
|
239 |
articles = fetch_rss_feeds()
|
240 |
+
process_and_store_articles(articles)
|
241 |
+
upload_to_hf_hub()
|
|