Spaces:
Sleeping
Sleeping
Create rss_processor.py
Browse files- rss_processor.py +180 -0
rss_processor.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import feedparser
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.docstore.document import Document
|
6 |
+
import logging
|
7 |
+
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
+
import shutil
|
9 |
+
import json
|
10 |
+
from datetime import datetime
|
11 |
+
import dateutil.parser
|
12 |
+
import hashlib
|
13 |
+
import re
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
LOCAL_DB_DIR = "chroma_db"
|
19 |
+
COLLECTION_NAME = "news_articles"
|
20 |
+
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
21 |
+
REPO_ID = "broadfield-dev/news-rag-db"
|
22 |
+
FEEDS_FILE = "rss_feeds.json"
|
23 |
+
|
24 |
+
login(token=HF_API_TOKEN)
|
25 |
+
hf_api = HfApi()
|
26 |
+
|
27 |
+
def get_embedding_model():
|
28 |
+
if not hasattr(get_embedding_model, "model"):
|
29 |
+
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
+
return get_embedding_model.model
|
31 |
+
|
32 |
+
def clean_text(text):
|
33 |
+
if not text or not isinstance(text, str):
|
34 |
+
return ""
|
35 |
+
text = re.sub(r'<.*?>', '', text)
|
36 |
+
text = ' '.join(text.split())
|
37 |
+
return text.strip().lower()
|
38 |
+
|
39 |
+
def fetch_rss_feeds():
|
40 |
+
articles = []
|
41 |
+
seen_keys = set()
|
42 |
+
|
43 |
+
try:
|
44 |
+
with open(FEEDS_FILE, 'r') as f:
|
45 |
+
feed_categories = json.load(f)
|
46 |
+
except FileNotFoundError:
|
47 |
+
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
|
48 |
+
return []
|
49 |
+
|
50 |
+
for category, feeds in feed_categories.items():
|
51 |
+
for feed_info in feeds:
|
52 |
+
feed_url = feed_info.get("url")
|
53 |
+
if not feed_url:
|
54 |
+
continue
|
55 |
+
|
56 |
+
try:
|
57 |
+
logger.info(f"Fetching '{feed_info.get('name', feed_url)}' from category '{category}'")
|
58 |
+
# Add a User-Agent to prevent getting blocked
|
59 |
+
feed = feedparser.parse(feed_url, agent="RSSNewsBot/1.0 (+http://huggingface.co/spaces/broadfield-dev/RSS_News)")
|
60 |
+
|
61 |
+
if feed.bozo:
|
62 |
+
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
|
63 |
+
continue
|
64 |
+
|
65 |
+
for entry in feed.entries[:10]: # Process max 10 entries per feed
|
66 |
+
title = entry.get("title", "No Title")
|
67 |
+
link = entry.get("link", "")
|
68 |
+
description = entry.get("summary", entry.get("description", ""))
|
69 |
+
|
70 |
+
cleaned_title = clean_text(title)
|
71 |
+
cleaned_link = clean_text(link)
|
72 |
+
|
73 |
+
published = "Unknown Date"
|
74 |
+
for date_field in ["published", "updated", "created", "pubDate"]:
|
75 |
+
if date_field in entry:
|
76 |
+
try:
|
77 |
+
parsed_date = dateutil.parser.parse(entry[date_field])
|
78 |
+
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
79 |
+
break
|
80 |
+
except (ValueError, TypeError):
|
81 |
+
continue
|
82 |
+
|
83 |
+
key = f"{cleaned_title}|{cleaned_link}|{published}"
|
84 |
+
if key not in seen_keys:
|
85 |
+
seen_keys.add(key)
|
86 |
+
image = "svg"
|
87 |
+
if 'media_content' in entry and entry.media_content:
|
88 |
+
image = entry.media_content[0].get('url', 'svg')
|
89 |
+
elif 'media_thumbnail' in entry and entry.media_thumbnail:
|
90 |
+
image = entry.media_thumbnail[0].get('url', 'svg')
|
91 |
+
|
92 |
+
articles.append({
|
93 |
+
"title": title,
|
94 |
+
"link": link,
|
95 |
+
"description": description,
|
96 |
+
"published": published,
|
97 |
+
"category": category, # Directly use category from JSON
|
98 |
+
"image": image,
|
99 |
+
})
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error fetching {feed_url}: {e}")
|
102 |
+
|
103 |
+
logger.info(f"Total articles fetched: {len(articles)}")
|
104 |
+
return articles
|
105 |
+
|
106 |
+
def process_and_store_articles(articles):
|
107 |
+
vector_db = Chroma(
|
108 |
+
persist_directory=LOCAL_DB_DIR,
|
109 |
+
embedding_function=get_embedding_model(),
|
110 |
+
collection_name=COLLECTION_NAME
|
111 |
+
)
|
112 |
+
|
113 |
+
try:
|
114 |
+
existing_ids = set(vector_db.get(include=[])["ids"])
|
115 |
+
except Exception:
|
116 |
+
existing_ids = set()
|
117 |
+
|
118 |
+
docs_to_add = []
|
119 |
+
ids_to_add = []
|
120 |
+
|
121 |
+
for article in articles:
|
122 |
+
cleaned_title = clean_text(article["title"])
|
123 |
+
cleaned_link = clean_text(article["link"])
|
124 |
+
doc_id = f"{cleaned_title}|{cleaned_link}|{article['published']}"
|
125 |
+
|
126 |
+
if doc_id in existing_ids:
|
127 |
+
continue
|
128 |
+
|
129 |
+
metadata = {
|
130 |
+
"title": article["title"],
|
131 |
+
"link": article["link"],
|
132 |
+
"original_description": article["description"],
|
133 |
+
"published": article["published"],
|
134 |
+
"category": article["category"],
|
135 |
+
"image": article["image"],
|
136 |
+
}
|
137 |
+
doc = Document(page_content=clean_text(article["description"]), metadata=metadata)
|
138 |
+
docs_to_add.append(doc)
|
139 |
+
ids_to_add.append(doc_id)
|
140 |
+
existing_ids.add(doc_id)
|
141 |
+
|
142 |
+
if docs_to_add:
|
143 |
+
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
|
144 |
+
vector_db.persist()
|
145 |
+
logger.info(f"Added {len(docs_to_add)} new articles to DB. Total in DB: {vector_db._collection.count()}")
|
146 |
+
|
147 |
+
def download_from_hf_hub():
|
148 |
+
if not os.path.exists(LOCAL_DB_DIR):
|
149 |
+
try:
|
150 |
+
snapshot_download(
|
151 |
+
repo_id=REPO_ID,
|
152 |
+
repo_type="dataset",
|
153 |
+
local_dir=".",
|
154 |
+
local_dir_use_symlinks=False,
|
155 |
+
allow_patterns=f"{LOCAL_DB_DIR}/**",
|
156 |
+
token=HF_API_TOKEN
|
157 |
+
)
|
158 |
+
except Exception as e:
|
159 |
+
logger.warning(f"Could not download DB from Hub (this is normal on first run): {e}")
|
160 |
+
|
161 |
+
def upload_to_hf_hub():
|
162 |
+
if os.path.exists(LOCAL_DB_DIR):
|
163 |
+
try:
|
164 |
+
hf_api.upload_folder(
|
165 |
+
folder_path=LOCAL_DB_DIR,
|
166 |
+
path_in_repo=LOCAL_DB_DIR,
|
167 |
+
repo_id=REPO_ID,
|
168 |
+
repo_type="dataset",
|
169 |
+
token=HF_API_TOKEN,
|
170 |
+
commit_message="Update RSS news database"
|
171 |
+
)
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
download_from_hf_hub()
|
177 |
+
articles = fetch_rss_feeds()
|
178 |
+
if articles:
|
179 |
+
process_and_store_articles(articles)
|
180 |
+
upload_to_hf_hub()
|