Spaces:
Sleeping
Sleeping
Update rss_processor.py
Browse files- rss_processor.py +67 -112
rss_processor.py
CHANGED
@@ -7,38 +7,29 @@ import logging
|
|
7 |
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
import shutil
|
9 |
import rss_feeds
|
10 |
-
from datetime import datetime
|
11 |
import dateutil.parser
|
12 |
import hashlib
|
13 |
import re
|
14 |
|
15 |
-
# Setup logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
|
20 |
-
MAX_ARTICLES_PER_FEED = 10
|
21 |
RSS_FEEDS = rss_feeds.RSS_FEEDS
|
22 |
COLLECTION_NAME = "news_articles"
|
23 |
-
HF_API_TOKEN = os.getenv("
|
24 |
REPO_ID = "broadfield-dev/news-rag-db"
|
25 |
|
26 |
-
# Initialize Hugging Face API
|
27 |
login(token=HF_API_TOKEN)
|
28 |
hf_api = HfApi()
|
29 |
|
30 |
def get_embedding_model():
|
31 |
-
"""Returns a singleton instance of the embedding model to avoid reloading."""
|
32 |
if not hasattr(get_embedding_model, "model"):
|
33 |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
34 |
return get_embedding_model.model
|
35 |
|
36 |
-
def get_daily_db_dir():
|
37 |
-
"""Returns the path for today's Chroma DB."""
|
38 |
-
return f"chroma_db_{date.today().isoformat()}"
|
39 |
-
|
40 |
def clean_text(text):
|
41 |
-
"""Clean text by removing HTML tags and extra whitespace."""
|
42 |
if not text or not isinstance(text, str):
|
43 |
return ""
|
44 |
text = re.sub(r'<.*?>', '', text)
|
@@ -57,16 +48,15 @@ def fetch_rss_feeds():
|
|
57 |
continue
|
58 |
article_count = 0
|
59 |
for entry in feed.entries:
|
60 |
-
if article_count >=
|
61 |
break
|
62 |
title = entry.get("title", "No Title")
|
63 |
link = entry.get("link", "")
|
64 |
description = entry.get("summary", entry.get("description", ""))
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
published = "Unknown Date"
|
71 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
72 |
if date_field in entry:
|
@@ -74,20 +64,16 @@ def fetch_rss_feeds():
|
|
74 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
75 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
76 |
break
|
77 |
-
except (ValueError, TypeError)
|
78 |
-
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
|
79 |
continue
|
80 |
|
81 |
-
|
82 |
-
key = f"{title}|{link}|{published}|{description_hash}"
|
83 |
if key not in seen_keys:
|
84 |
seen_keys.add(key)
|
85 |
image = "svg"
|
86 |
for img_source in [
|
87 |
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
|
88 |
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
|
89 |
-
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
|
90 |
-
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
|
91 |
]:
|
92 |
try:
|
93 |
img = img_source(entry)
|
@@ -112,129 +98,98 @@ def fetch_rss_feeds():
|
|
112 |
return articles
|
113 |
|
114 |
def categorize_feed(url):
|
115 |
-
"""Categorize an RSS feed based on its URL."""
|
116 |
if not url or not isinstance(url, str):
|
117 |
-
logger.warning(f"Invalid URL provided for categorization: {url}")
|
118 |
return "Uncategorized"
|
119 |
-
|
120 |
url = url.lower().strip()
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if any(keyword in url for keyword in ["
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
|
133 |
-
return "Weather"
|
134 |
-
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
|
135 |
-
return "Data & Statistics"
|
136 |
-
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
|
137 |
-
return "Space"
|
138 |
-
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
|
139 |
-
return "Science"
|
140 |
-
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
|
141 |
-
return "Tech"
|
142 |
-
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
|
143 |
-
return "Astrology"
|
144 |
-
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
|
145 |
-
return "Politics"
|
146 |
-
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
|
147 |
-
return "Earth Weather"
|
148 |
-
elif "vogue" in url:
|
149 |
-
return "Lifestyle"
|
150 |
-
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
|
151 |
-
return "Physics"
|
152 |
-
else:
|
153 |
-
logger.warning(f"No matching category found for URL: {url}")
|
154 |
-
return "Uncategorized"
|
155 |
|
156 |
def process_and_store_articles(articles):
|
157 |
-
db_path = get_daily_db_dir()
|
158 |
vector_db = Chroma(
|
159 |
-
persist_directory=
|
160 |
embedding_function=get_embedding_model(),
|
161 |
collection_name=COLLECTION_NAME
|
162 |
)
|
163 |
|
164 |
try:
|
165 |
existing_ids = set(vector_db.get(include=[])["ids"])
|
|
|
166 |
except Exception:
|
167 |
existing_ids = set()
|
|
|
168 |
|
169 |
docs_to_add = []
|
170 |
ids_to_add = []
|
171 |
|
172 |
for article in articles:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
"image": article["image"],
|
193 |
-
}
|
194 |
-
doc = Document(page_content=description, metadata=metadata)
|
195 |
-
docs_to_add.append(doc)
|
196 |
-
ids_to_add.append(doc_id)
|
197 |
-
existing_ids.add(doc_id)
|
198 |
-
except Exception as e:
|
199 |
-
logger.error(f"Error processing article {article.get('title', 'N/A')}: {e}")
|
200 |
|
201 |
if docs_to_add:
|
202 |
try:
|
203 |
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
|
204 |
vector_db.persist()
|
205 |
-
logger.info(f"Added {len(docs_to_add)} new articles to DB
|
206 |
except Exception as e:
|
207 |
-
logger.error(f"Error storing articles
|
208 |
|
209 |
def download_from_hf_hub():
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
224 |
|
225 |
def upload_to_hf_hub():
|
226 |
-
|
227 |
-
if os.path.exists(db_path):
|
228 |
try:
|
229 |
-
logger.info(f"Uploading updated Chroma DB '{
|
230 |
hf_api.upload_folder(
|
231 |
-
folder_path=
|
232 |
-
path_in_repo=
|
233 |
repo_id=REPO_ID,
|
234 |
repo_type="dataset",
|
235 |
-
token=HF_API_TOKEN
|
|
|
236 |
)
|
237 |
-
logger.info(f"Database folder '{
|
238 |
except Exception as e:
|
239 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
240 |
|
|
|
7 |
from huggingface_hub import HfApi, login, snapshot_download
|
8 |
import shutil
|
9 |
import rss_feeds
|
10 |
+
from datetime import datetime
|
11 |
import dateutil.parser
|
12 |
import hashlib
|
13 |
import re
|
14 |
|
|
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
LOCAL_DB_DIR = "chroma_db"
|
|
|
19 |
RSS_FEEDS = rss_feeds.RSS_FEEDS
|
20 |
COLLECTION_NAME = "news_articles"
|
21 |
+
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
22 |
REPO_ID = "broadfield-dev/news-rag-db"
|
23 |
|
|
|
24 |
login(token=HF_API_TOKEN)
|
25 |
hf_api = HfApi()
|
26 |
|
27 |
def get_embedding_model():
|
|
|
28 |
if not hasattr(get_embedding_model, "model"):
|
29 |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
return get_embedding_model.model
|
31 |
|
|
|
|
|
|
|
|
|
32 |
def clean_text(text):
|
|
|
33 |
if not text or not isinstance(text, str):
|
34 |
return ""
|
35 |
text = re.sub(r'<.*?>', '', text)
|
|
|
48 |
continue
|
49 |
article_count = 0
|
50 |
for entry in feed.entries:
|
51 |
+
if article_count >= 10:
|
52 |
break
|
53 |
title = entry.get("title", "No Title")
|
54 |
link = entry.get("link", "")
|
55 |
description = entry.get("summary", entry.get("description", ""))
|
56 |
|
57 |
+
cleaned_title = clean_text(title)
|
58 |
+
cleaned_link = clean_text(link)
|
59 |
+
|
|
|
60 |
published = "Unknown Date"
|
61 |
for date_field in ["published", "updated", "created", "pubDate"]:
|
62 |
if date_field in entry:
|
|
|
64 |
parsed_date = dateutil.parser.parse(entry[date_field])
|
65 |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
|
66 |
break
|
67 |
+
except (ValueError, TypeError):
|
|
|
68 |
continue
|
69 |
|
70 |
+
key = f"{cleaned_title}|{cleaned_link}|{published}"
|
|
|
71 |
if key not in seen_keys:
|
72 |
seen_keys.add(key)
|
73 |
image = "svg"
|
74 |
for img_source in [
|
75 |
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
|
76 |
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
|
|
|
|
|
77 |
]:
|
78 |
try:
|
79 |
img = img_source(entry)
|
|
|
98 |
return articles
|
99 |
|
100 |
def categorize_feed(url):
|
|
|
101 |
if not url or not isinstance(url, str):
|
|
|
102 |
return "Uncategorized"
|
|
|
103 |
url = url.lower().strip()
|
104 |
+
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "jneurosci.org", "nejm.org", "lancet.com"]): return "Academic Papers"
|
105 |
+
if any(keyword in url for keyword in ["ft.com", "marketwatch.com", "cnbc.com", "wsj.com", "economist.com"]): return "Business"
|
106 |
+
if any(keyword in url for keyword in ["investing.com", "fool.co.uk", "seekingalpha.com", "yahoofinance.com"]): return "Stocks & Markets"
|
107 |
+
if any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space.com", "universetoday.com", "esa.int"]): return "Space"
|
108 |
+
if any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "scientificamerican", "newscientist", "livescience"]): return "Science"
|
109 |
+
if any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]): return "Tech"
|
110 |
+
if any(keyword in url for keyword in ["horoscope", "astrostyle"]): return "Astrology"
|
111 |
+
if any(keyword in url for keyword in ["bbci.co.uk/news/politics", "politico.com", "thehill.com"]): return "Politics"
|
112 |
+
if any(keyword in url for keyword in ["weather.com", "weather.gov", "swpc.noaa.gov", "foxweather"]): return "Earth Weather"
|
113 |
+
if "phys.org" in url or "aps.org" in url: return "Physics"
|
114 |
+
return "Uncategorized"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
def process_and_store_articles(articles):
|
|
|
117 |
vector_db = Chroma(
|
118 |
+
persist_directory=LOCAL_DB_DIR,
|
119 |
embedding_function=get_embedding_model(),
|
120 |
collection_name=COLLECTION_NAME
|
121 |
)
|
122 |
|
123 |
try:
|
124 |
existing_ids = set(vector_db.get(include=[])["ids"])
|
125 |
+
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
|
126 |
except Exception:
|
127 |
existing_ids = set()
|
128 |
+
logger.info("No existing DB found or it is empty. Starting fresh.")
|
129 |
|
130 |
docs_to_add = []
|
131 |
ids_to_add = []
|
132 |
|
133 |
for article in articles:
|
134 |
+
cleaned_title = clean_text(article["title"])
|
135 |
+
cleaned_link = clean_text(article["link"])
|
136 |
+
doc_id = f"{cleaned_title}|{cleaned_link}|{article['published']}"
|
137 |
+
|
138 |
+
if doc_id in existing_ids:
|
139 |
+
continue
|
140 |
+
|
141 |
+
metadata = {
|
142 |
+
"title": article["title"],
|
143 |
+
"link": article["link"],
|
144 |
+
"original_description": article["description"],
|
145 |
+
"published": article["published"],
|
146 |
+
"category": article["category"],
|
147 |
+
"image": article["image"],
|
148 |
+
}
|
149 |
+
doc = Document(page_content=clean_text(article["description"]), metadata=metadata)
|
150 |
+
docs_to_add.append(doc)
|
151 |
+
ids_to_add.append(doc_id)
|
152 |
+
existing_ids.add(doc_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
if docs_to_add:
|
155 |
try:
|
156 |
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
|
157 |
vector_db.persist()
|
158 |
+
logger.info(f"Added {len(docs_to_add)} new articles to DB. Total in DB: {vector_db._collection.count()}")
|
159 |
except Exception as e:
|
160 |
+
logger.error(f"Error storing articles: {e}")
|
161 |
|
162 |
def download_from_hf_hub():
|
163 |
+
if not os.path.exists(LOCAL_DB_DIR):
|
164 |
+
try:
|
165 |
+
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
|
166 |
+
snapshot_download(
|
167 |
+
repo_id=REPO_ID,
|
168 |
+
repo_type="dataset",
|
169 |
+
local_dir=".",
|
170 |
+
local_dir_use_symlinks=False,
|
171 |
+
allow_patterns=f"{LOCAL_DB_DIR}/**",
|
172 |
+
token=HF_API_TOKEN
|
173 |
+
)
|
174 |
+
logger.info("Finished downloading DB.")
|
175 |
+
except Exception as e:
|
176 |
+
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
|
177 |
+
else:
|
178 |
+
logger.info("Local Chroma DB exists, loading existing data.")
|
179 |
|
180 |
def upload_to_hf_hub():
|
181 |
+
if os.path.exists(LOCAL_DB_DIR):
|
|
|
182 |
try:
|
183 |
+
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
|
184 |
hf_api.upload_folder(
|
185 |
+
folder_path=LOCAL_DB_DIR,
|
186 |
+
path_in_repo=LOCAL_DB_DIR,
|
187 |
repo_id=REPO_ID,
|
188 |
repo_type="dataset",
|
189 |
+
token=HF_API_TOKEN,
|
190 |
+
commit_message="Update RSS news database"
|
191 |
)
|
192 |
+
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
|
193 |
except Exception as e:
|
194 |
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|
195 |
|