Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import sys
|
2 |
import subprocess
|
3 |
-
from flask import Flask, render_template, request, flash, redirect, url_for
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import os
|
@@ -19,6 +19,7 @@ CHROMA_PATH = "chroma_db"
|
|
19 |
COLLECTION_NAME = "bible_verses"
|
20 |
MODEL_NAME = "google/embeddinggemma-300m"
|
21 |
DATASET_REPO = "broadfield-dev/bible-chromadb-gemma"
|
|
|
22 |
|
23 |
# --- Global variables for resources ---
|
24 |
chroma_collection = None
|
@@ -26,83 +27,88 @@ tokenizer = None
|
|
26 |
embedding_model = None
|
27 |
|
28 |
def load_resources():
|
29 |
-
"""
|
30 |
-
Downloads the DB from the Hub if not present, then loads it and the model.
|
31 |
-
"""
|
32 |
global chroma_collection, tokenizer, embedding_model
|
33 |
if chroma_collection and embedding_model:
|
34 |
return True
|
35 |
|
36 |
print("Attempting to load resources...")
|
37 |
try:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
51 |
collection = client.get_collection(name=COLLECTION_NAME)
|
52 |
-
|
53 |
if collection.count() == 0:
|
54 |
-
print(
|
55 |
return False
|
56 |
|
57 |
chroma_collection = collection
|
58 |
print(f"Successfully connected to DB with {collection.count()} items.")
|
59 |
-
|
60 |
-
# 3. Load the embedding model
|
61 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
62 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
63 |
print(f"Embedding model '{MODEL_NAME}' loaded successfully.")
|
64 |
|
65 |
return True
|
66 |
except Exception as e:
|
67 |
-
print(f"Could not load resources. The database may not be built yet.")
|
68 |
print(f"Error: {e}")
|
69 |
return False
|
70 |
|
71 |
-
# Try to load resources on startup.
|
72 |
resources_loaded = load_resources()
|
73 |
|
74 |
-
# --- 3. Define App Routes
|
|
|
75 |
@app.route('/')
|
76 |
def home():
|
77 |
-
if not resources_loaded:
|
78 |
-
flash(f"Welcome! Database not ready. Use the admin panel to build it.", "warning")
|
79 |
return render_template('index.html')
|
80 |
|
81 |
@app.route('/build-rag', methods=['POST'])
|
82 |
def build_rag_route():
|
83 |
-
|
84 |
try:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
)
|
91 |
-
|
92 |
-
|
93 |
except Exception as e:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
@app.route('/search', methods=['POST'])
|
99 |
def search():
|
100 |
global resources_loaded
|
101 |
if not resources_loaded:
|
102 |
-
print("Reloading resources for search...")
|
103 |
resources_loaded = load_resources()
|
104 |
if not resources_loaded:
|
105 |
-
flash("Database not ready. Please wait for the build process to finish.", "error")
|
106 |
return redirect(url_for('home'))
|
107 |
|
108 |
user_query = request.form['query']
|
@@ -120,9 +126,7 @@ def search():
|
|
120 |
)
|
121 |
|
122 |
results_list = []
|
123 |
-
documents = search_results['documents'][0]
|
124 |
-
metadatas = search_results['metadatas'][0]
|
125 |
-
distances = search_results['distances'][0]
|
126 |
|
127 |
for i in range(len(documents)):
|
128 |
results_list.append({
|
|
|
1 |
import sys
|
2 |
import subprocess
|
3 |
+
from flask import Flask, render_template, request, flash, redirect, url_for, jsonify
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import os
|
|
|
19 |
COLLECTION_NAME = "bible_verses"
|
20 |
MODEL_NAME = "google/embeddinggemma-300m"
|
21 |
DATASET_REPO = "broadfield-dev/bible-chromadb-gemma"
|
22 |
+
STATUS_FILE = "build_status.log" # File to track build status
|
23 |
|
24 |
# --- Global variables for resources ---
|
25 |
chroma_collection = None
|
|
|
27 |
embedding_model = None
|
28 |
|
29 |
def load_resources():
|
30 |
+
"""Downloads the DB from the Hub if not present, then loads it and the model."""
|
|
|
|
|
31 |
global chroma_collection, tokenizer, embedding_model
|
32 |
if chroma_collection and embedding_model:
|
33 |
return True
|
34 |
|
35 |
print("Attempting to load resources...")
|
36 |
try:
|
37 |
+
if not os.path.exists(CHROMA_PATH) or not os.listdir(CHROMA_PATH):
|
38 |
+
print(f"Local DB not found. Downloading from '{DATASET_REPO}'...")
|
39 |
+
snapshot_download(
|
40 |
+
repo_id=DATASET_REPO,
|
41 |
+
repo_type="dataset",
|
42 |
+
local_dir=CHROMA_PATH,
|
43 |
+
local_dir_use_symlinks=False
|
44 |
+
)
|
45 |
+
print("Database files downloaded.")
|
46 |
+
else:
|
47 |
+
print("Local database files found.")
|
48 |
+
|
49 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
50 |
collection = client.get_collection(name=COLLECTION_NAME)
|
|
|
51 |
if collection.count() == 0:
|
52 |
+
print("Warning: Database collection is empty.")
|
53 |
return False
|
54 |
|
55 |
chroma_collection = collection
|
56 |
print(f"Successfully connected to DB with {collection.count()} items.")
|
57 |
+
|
|
|
58 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
59 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
60 |
print(f"Embedding model '{MODEL_NAME}' loaded successfully.")
|
61 |
|
62 |
return True
|
63 |
except Exception as e:
|
64 |
+
print(f"Could not load resources. The database may not be built yet or the repo is empty.")
|
65 |
print(f"Error: {e}")
|
66 |
return False
|
67 |
|
|
|
68 |
resources_loaded = load_resources()
|
69 |
|
70 |
+
# --- 3. Define App Routes ---
|
71 |
+
|
72 |
@app.route('/')
|
73 |
def home():
|
|
|
|
|
74 |
return render_template('index.html')
|
75 |
|
76 |
@app.route('/build-rag', methods=['POST'])
|
77 |
def build_rag_route():
|
78 |
+
"""Triggers the build script and immediately responds."""
|
79 |
try:
|
80 |
+
# Clear old status and set to "In Progress"
|
81 |
+
with open(STATUS_FILE, "w") as f:
|
82 |
+
f.write("IN_PROGRESS: Starting build process...")
|
83 |
+
|
84 |
+
# Start the build process in the background
|
85 |
+
subprocess.Popen([sys.executable, "build_rag.py"])
|
86 |
+
|
87 |
+
return jsonify({"status": "started"})
|
88 |
except Exception as e:
|
89 |
+
with open(STATUS_FILE, "w") as f:
|
90 |
+
f.write(f"FAILED: Could not start process - {e}")
|
91 |
+
return jsonify({"status": "error", "message": str(e)}), 500
|
92 |
+
|
93 |
+
@app.route('/status')
|
94 |
+
def status():
|
95 |
+
"""Endpoint for the frontend to poll for build status."""
|
96 |
+
if not os.path.exists(STATUS_FILE):
|
97 |
+
return jsonify({"status": "NOT_STARTED"})
|
98 |
+
|
99 |
+
with open(STATUS_FILE, "r") as f:
|
100 |
+
status_line = f.read().strip()
|
101 |
+
|
102 |
+
status_code, _, message = status_line.partition(': ')
|
103 |
+
return jsonify({"status": status_code, "message": message})
|
104 |
+
|
105 |
@app.route('/search', methods=['POST'])
|
106 |
def search():
|
107 |
global resources_loaded
|
108 |
if not resources_loaded:
|
|
|
109 |
resources_loaded = load_resources()
|
110 |
if not resources_loaded:
|
111 |
+
flash("Database not ready. Please wait for the build process to finish and then refresh the page.", "error")
|
112 |
return redirect(url_for('home'))
|
113 |
|
114 |
user_query = request.form['query']
|
|
|
126 |
)
|
127 |
|
128 |
results_list = []
|
129 |
+
documents, metadatas, distances = search_results['documents'][0], search_results['metadatas'][0], search_results['distances'][0]
|
|
|
|
|
130 |
|
131 |
for i in range(len(documents)):
|
132 |
results_list.append({
|