Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
# app.py
|
2 |
|
3 |
import sys
|
4 |
import subprocess
|
|
|
5 |
from flask import Flask, render_template, request, flash, redirect, url_for, jsonify
|
6 |
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import os
|
10 |
import chromadb
|
@@ -13,19 +13,47 @@ from huggingface_hub import snapshot_download
|
|
13 |
app = Flask(__name__)
|
14 |
app.secret_key = os.urandom(24)
|
15 |
|
|
|
16 |
CHROMA_PATH = "chroma_db"
|
17 |
COLLECTION_NAME = "bible_verses"
|
18 |
-
# *** CHANGE 1: USE A MODEL WITH NORMALIZED EMBEDDINGS ***
|
19 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
20 |
-
# *** CHANGE 2: USE THE NEW REPO FOR THE NEW DATABASE ***
|
21 |
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet"
|
22 |
STATUS_FILE = "build_status.log"
|
|
|
23 |
|
|
|
24 |
chroma_collection = None
|
25 |
tokenizer = None
|
26 |
embedding_model = None
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def mean_pooling(model_output, attention_mask):
|
30 |
token_embeddings = model_output[0]
|
31 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
@@ -39,28 +67,19 @@ def load_resources():
|
|
39 |
if not os.path.exists(CHROMA_PATH) or not os.listdir(CHROMA_PATH):
|
40 |
print(f"Local DB not found. Downloading from '{DATASET_REPO}'...")
|
41 |
snapshot_download(repo_id=DATASET_REPO, repo_type="dataset", local_dir=CHROMA_PATH, local_dir_use_symlinks=False)
|
42 |
-
print("Database files downloaded.")
|
43 |
-
else:
|
44 |
-
print("Local database files found.")
|
45 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
46 |
-
|
47 |
-
if collection.count() == 0:
|
48 |
-
print("Warning: Database collection is empty.")
|
49 |
-
return False
|
50 |
-
chroma_collection = collection
|
51 |
-
print(f"Successfully connected to DB with {collection.count()} items.")
|
52 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
53 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
54 |
-
print(f"
|
55 |
return True
|
56 |
except Exception as e:
|
57 |
-
print(f"Could not load resources. DB may not be built
|
58 |
-
print(f"Error: {e}")
|
59 |
return False
|
60 |
|
61 |
resources_loaded = load_resources()
|
62 |
|
63 |
-
#
|
64 |
@app.route('/')
|
65 |
def home():
|
66 |
return render_template('index.html')
|
@@ -86,9 +105,9 @@ def status():
|
|
86 |
def search():
|
87 |
global resources_loaded
|
88 |
if not resources_loaded:
|
89 |
-
resources_loaded = load_resources()
|
90 |
if not resources_loaded:
|
91 |
-
flash("Database not ready. Please
|
92 |
return redirect(url_for('home'))
|
93 |
|
94 |
user_query = request.form['query']
|
@@ -98,29 +117,49 @@ def search():
|
|
98 |
encoded_input = tokenizer([user_query], padding=True, truncation=True, return_tensors='pt')
|
99 |
with torch.no_grad():
|
100 |
model_output = embedding_model(**encoded_input)
|
101 |
-
|
102 |
query_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
|
103 |
|
104 |
-
|
105 |
-
# query_embedding = F.normalize(query_embedding, p=2, dim=1)
|
106 |
-
|
107 |
-
search_results = chroma_collection.query(
|
108 |
-
query_embeddings=query_embedding.cpu().tolist(),
|
109 |
-
n_results=10
|
110 |
-
)
|
111 |
|
112 |
results_list = []
|
113 |
documents, metadatas, distances = search_results['documents'][0], search_results['metadatas'][0], search_results['distances'][0]
|
114 |
|
115 |
for i in range(len(documents)):
|
|
|
|
|
116 |
results_list.append({
|
117 |
'score': distances[i],
|
118 |
'text': documents[i],
|
119 |
-
'reference':
|
120 |
-
'version':
|
|
|
|
|
121 |
})
|
122 |
|
123 |
return render_template('index.html', results=results_list, query=user_query)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if __name__ == '__main__':
|
126 |
app.run(host='0.0.0.0', port=7860)
|
|
|
1 |
+
# app.py
|
2 |
|
3 |
import sys
|
4 |
import subprocess
|
5 |
+
import json
|
6 |
from flask import Flask, render_template, request, flash, redirect, url_for, jsonify
|
7 |
import torch
|
|
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import os
|
10 |
import chromadb
|
|
|
13 |
app = Flask(__name__)
|
14 |
app.secret_key = os.urandom(24)
|
15 |
|
16 |
+
# --- App Configuration ---
|
17 |
CHROMA_PATH = "chroma_db"
|
18 |
COLLECTION_NAME = "bible_verses"
|
|
|
19 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
|
|
20 |
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet"
|
21 |
STATUS_FILE = "build_status.log"
|
22 |
+
JSON_DIRECTORY = 'bible_json'
|
23 |
|
24 |
+
# --- Globals and Helpers ---
|
25 |
chroma_collection = None
|
26 |
tokenizer = None
|
27 |
embedding_model = None
|
28 |
|
29 |
+
# *** ADD 1: BIBLE BOOK MAPPINGS FOR DATA RETRIEVAL ***
|
30 |
+
BOOK_ID_TO_NAME = {
|
31 |
+
1: "Genesis", 2: "Exodus", 3: "Leviticus", 4: "Numbers", 5: "Deuteronomy", 6: "Joshua", 7: "Judges", 8: "Ruth", 9: "1 Samuel", 10: "2 Samuel", 11: "1 Kings", 12: "2 Kings", 13: "1 Chronicles", 14: "2 Chronicles", 15: "Ezra", 16: "Nehemiah", 17: "Esther", 18: "Job", 19: "Psalms", 20: "Proverbs", 21: "Ecclesiastes", 22: "Song of Solomon", 23: "Isaiah", 24: "Jeremiah", 25: "Lamentations", 26: "Ezekiel", 27: "Daniel", 28: "Hosea", 29: "Joel", 30: "Amos", 31: "Obadiah", 32: "Jonah", 33: "Micah", 34: "Nahum", 35: "Habakkuk", 36: "Zephaniah", 37: "Haggai", 38: "Zechariah", 39: "Malachi", 40: "Matthew", 41: "Mark", 42: "Luke", 43: "John", 44: "Acts", 45: "Romans", 46: "1 Corinthians", 47: "2 Corinthians", 48: "Galatians", 49: "Ephesians", 50: "Philippians", 51: "Colossians", 52: "1 Thessalonians", 53: "2 Thessalonians", 54: "1 Timothy", 55: "2 Timothy", 56: "Titus", 57: "Philemon", 58: "Hebrews", 59: "James", 60: "1 Peter", 61: "2 Peter", 62: "1 John", 63: "2 John", 64: "3 John", 65: "Jude", 66: "Revelation"
|
32 |
+
}
|
33 |
+
BOOK_NAME_TO_ID = {v: k for k, v in BOOK_ID_TO_NAME.items()}
|
34 |
+
|
35 |
+
# *** ADD 2: HELPER FUNCTION TO READ VERSES FROM JSON ***
|
36 |
+
def get_verses_from_json(version, book_name, chapter=None):
|
37 |
+
book_id = BOOK_NAME_TO_ID.get(book_name)
|
38 |
+
if not book_id: return None
|
39 |
+
|
40 |
+
file_path = os.path.join(JSON_DIRECTORY, f"t_{version.lower()}.json")
|
41 |
+
if not os.path.exists(file_path): return None
|
42 |
+
|
43 |
+
with open(file_path, 'r') as f: data = json.load(f)
|
44 |
+
|
45 |
+
rows = data.get("resultset", {}).get("row", [])
|
46 |
+
verses = []
|
47 |
+
for row in rows:
|
48 |
+
field = row.get("field", [])
|
49 |
+
if len(field) == 5:
|
50 |
+
row_book_id, row_chapter, row_verse, text = field[1], field[2], field[3], field[4]
|
51 |
+
if row_book_id == book_id and (chapter is None or row_chapter == chapter):
|
52 |
+
verses.append({'chapter': row_chapter, 'verse': row_verse, 'text': text.strip()})
|
53 |
+
|
54 |
+
verses.sort(key=lambda v: (v['chapter'], v['verse']))
|
55 |
+
return verses
|
56 |
+
|
57 |
def mean_pooling(model_output, attention_mask):
|
58 |
token_embeddings = model_output[0]
|
59 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
|
67 |
if not os.path.exists(CHROMA_PATH) or not os.listdir(CHROMA_PATH):
|
68 |
print(f"Local DB not found. Downloading from '{DATASET_REPO}'...")
|
69 |
snapshot_download(repo_id=DATASET_REPO, repo_type="dataset", local_dir=CHROMA_PATH, local_dir_use_symlinks=False)
|
|
|
|
|
|
|
70 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
71 |
+
chroma_collection = client.get_collection(name=COLLECTION_NAME)
|
|
|
|
|
|
|
|
|
|
|
72 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
73 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
74 |
+
print(f"Resources loaded: DB has {chroma_collection.count()} items. Model is '{MODEL_NAME}'.")
|
75 |
return True
|
76 |
except Exception as e:
|
77 |
+
print(f"Could not load resources. DB may not be built. Error: {e}")
|
|
|
78 |
return False
|
79 |
|
80 |
resources_loaded = load_resources()
|
81 |
|
82 |
+
# --- Routes ---
|
83 |
@app.route('/')
|
84 |
def home():
|
85 |
return render_template('index.html')
|
|
|
105 |
def search():
|
106 |
global resources_loaded
|
107 |
if not resources_loaded:
|
108 |
+
resources_loaded = load_resources() # Retry loading
|
109 |
if not resources_loaded:
|
110 |
+
flash("Database not ready. Please build the database from the Admin Panel.", "error")
|
111 |
return redirect(url_for('home'))
|
112 |
|
113 |
user_query = request.form['query']
|
|
|
117 |
encoded_input = tokenizer([user_query], padding=True, truncation=True, return_tensors='pt')
|
118 |
with torch.no_grad():
|
119 |
model_output = embedding_model(**encoded_input)
|
|
|
120 |
query_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
|
121 |
|
122 |
+
search_results = chroma_collection.query(query_embeddings=query_embedding.cpu().tolist(), n_results=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
results_list = []
|
125 |
documents, metadatas, distances = search_results['documents'][0], search_results['metadatas'][0], search_results['distances'][0]
|
126 |
|
127 |
for i in range(len(documents)):
|
128 |
+
meta = metadatas[i]
|
129 |
+
# *** CHANGE 3: PASS NEW METADATA TO TEMPLATE FOR LINKING ***
|
130 |
results_list.append({
|
131 |
'score': distances[i],
|
132 |
'text': documents[i],
|
133 |
+
'reference': meta.get('reference', 'N/A'),
|
134 |
+
'version': meta.get('version', 'N/A'),
|
135 |
+
'book_name': meta.get('book_name', ''),
|
136 |
+
'chapter': meta.get('chapter', '')
|
137 |
})
|
138 |
|
139 |
return render_template('index.html', results=results_list, query=user_query)
|
140 |
|
141 |
+
# *** ADD 3: NEW ROUTE FOR VIEWING A FULL CHAPTER ***
|
142 |
+
@app.route('/chapter/<version>/<book_name>/<int:chapter_num>')
|
143 |
+
def view_chapter(version, book_name, chapter_num):
|
144 |
+
verses = get_verses_from_json(version, book_name, chapter=chapter_num)
|
145 |
+
if not verses:
|
146 |
+
return "Chapter not found.", 404
|
147 |
+
return render_template('chapter.html', book_name=book_name, chapter_num=chapter_num, verses=verses, version=version)
|
148 |
+
|
149 |
+
# *** ADD 4: NEW ROUTE FOR VIEWING A FULL BOOK ***
|
150 |
+
@app.route('/book/<version>/<book_name>')
|
151 |
+
def view_book(version, book_name):
|
152 |
+
all_verses = get_verses_from_json(version, book_name)
|
153 |
+
if not all_verses:
|
154 |
+
return "Book not found.", 404
|
155 |
+
|
156 |
+
chapters = {}
|
157 |
+
for verse in all_verses:
|
158 |
+
chap_num = verse['chapter']
|
159 |
+
if chap_num not in chapters: chapters[chap_num] = []
|
160 |
+
chapters[chap_num].append(verse)
|
161 |
+
|
162 |
+
return render_template('book.html', book_name=book_name, chapters=chapters)
|
163 |
+
|
164 |
if __name__ == '__main__':
|
165 |
app.run(host='0.0.0.0', port=7860)
|