Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,97 @@
|
|
|
|
1 |
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
import torch
|
|
|
5 |
|
|
|
6 |
model_id = "google/gemma-3n-e4b-it"
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
processor = AutoProcessor.from_pretrained(model_id)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
]
|
23 |
-
}
|
24 |
-
]
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
generation = generation[0][input_len:]
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
# It has a slightly soft, natural feel, likely captured in daylight.
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
import torch
|
6 |
+
import io
|
7 |
|
8 |
+
# Initialize the model and processor
|
9 |
model_id = "google/gemma-3n-e4b-it"
|
10 |
+
model = Gemma3nForConditionalGeneration.from_pretrained(
|
11 |
+
model_id, device_map="auto", torch_dtype=torch.bfloat16
|
12 |
+
).eval()
|
13 |
processor = AutoProcessor.from_pretrained(model_id)
|
14 |
|
15 |
+
def process_inputs(image_input, image_url, text_prompt):
|
16 |
+
"""
|
17 |
+
Process image (from file or URL) and text prompt to generate a response using the Gemma model.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
image_input: Uploaded image file
|
21 |
+
image_url: URL of an image
|
22 |
+
text_prompt: Text input from the user
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
Generated text response from the model
|
26 |
+
"""
|
27 |
+
try:
|
28 |
+
# Handle image input: prioritize uploaded image, then URL, then None
|
29 |
+
image = None
|
30 |
+
if image_input is not None:
|
31 |
+
image = Image.open(image_input).convert("RGB")
|
32 |
+
elif image_url:
|
33 |
+
response = requests.get(image_url, stream=True)
|
34 |
+
response.raise_for_status()
|
35 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
36 |
+
|
37 |
+
# Prepare messages for the model
|
38 |
+
messages = [
|
39 |
+
{
|
40 |
+
"role": "system",
|
41 |
+
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"role": "user",
|
45 |
+
"content": []
|
46 |
+
}
|
47 |
]
|
|
|
|
|
48 |
|
49 |
+
# Add image to content if provided
|
50 |
+
if image is not None:
|
51 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
52 |
+
|
53 |
+
# Add text prompt if provided
|
54 |
+
if text_prompt:
|
55 |
+
messages[1]["content"].append({"type": "text", "text": text_prompt})
|
56 |
+
else:
|
57 |
+
return "Please provide a text prompt."
|
58 |
+
|
59 |
+
# Process inputs using the processor
|
60 |
+
inputs = processor.apply_chat_template(
|
61 |
+
messages,
|
62 |
+
add_generation_prompt=True,
|
63 |
+
tokenize=True,
|
64 |
+
return_dict=True,
|
65 |
+
return_tensors="pt",
|
66 |
+
).to(model.device)
|
67 |
+
|
68 |
+
input_len = inputs["input_ids"].shape[-1]
|
69 |
+
|
70 |
+
# Generate response
|
71 |
+
with torch.inference_mode():
|
72 |
+
generation = model.generate(**inputs, max_new_tokens=500, do_sample=False)
|
73 |
+
generation = generation[0][input_len:]
|
74 |
|
75 |
+
# Decode and return the response
|
76 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
77 |
+
return decoded
|
78 |
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error: {str(e)}"
|
|
|
81 |
|
82 |
+
# Define the Gradio interface
|
83 |
+
iface = gr.Interface(
|
84 |
+
fn=process_inputs,
|
85 |
+
inputs=[
|
86 |
+
gr.Image(type="file", label="Upload Image (optional)"),
|
87 |
+
gr.Textbox(label="Image URL (optional)", placeholder="Enter image URL"),
|
88 |
+
gr.Textbox(label="Text Prompt", placeholder="Enter your prompt here")
|
89 |
+
],
|
90 |
+
outputs=gr.Textbox(label="Model Response"),
|
91 |
+
title="Gemma-3 Multimodal App",
|
92 |
+
description="Upload an image or provide an image URL, and enter a text prompt to interact with the Gemma-3 model. The model can describe images, answer questions about them, or respond to text-only prompts.",
|
93 |
+
allow_flagging="never"
|
94 |
+
)
|
95 |
|
96 |
+
# Launch the app
|
97 |
+
iface.launch()
|
|