Spaces:
Sleeping
Sleeping
Create server.py
Browse files
server.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import threading
|
4 |
+
from datetime import datetime
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import sqlite3
|
8 |
+
import time
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
DEMO_MODE = os.getenv("DEMO_MODE", "true").lower() == 'true'
|
12 |
+
# --- Load Environment & Configuration ---
|
13 |
+
load_dotenv()
|
14 |
+
try:
|
15 |
+
from datasets import load_dataset, Dataset, DatasetDict, Features, Value
|
16 |
+
HF_DATASETS_AVAILABLE = True
|
17 |
+
except ImportError:
|
18 |
+
HF_DATASETS_AVAILABLE = False
|
19 |
+
Features, Value = None, None # Define placeholders if import fails
|
20 |
+
|
21 |
+
STORAGE_BACKEND_CONFIG = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
|
22 |
+
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
|
23 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
+
HF_BACKUP_THRESHOLD = int(os.getenv("HF_BACKUP_THRESHOLD", 10))
|
25 |
+
DB_FILE_JSON = "social_data.json"
|
26 |
+
DB_FILE_SQLITE = "social_data.db"
|
27 |
+
|
28 |
+
db_lock = threading.Lock()
|
29 |
+
dirty_operations_count = 0
|
30 |
+
|
31 |
+
# --- Database Initialization and Persistence ---
|
32 |
+
|
33 |
+
def force_persist_data():
|
34 |
+
global dirty_operations_count
|
35 |
+
with db_lock:
|
36 |
+
storage_backend = STORAGE_BACKEND_CONFIG # Use a local copy for thread safety
|
37 |
+
if storage_backend == "RAM":
|
38 |
+
return True, "RAM backend. No persistence."
|
39 |
+
elif storage_backend == "SQLITE":
|
40 |
+
with sqlite3.connect(DB_FILE_SQLITE) as conn:
|
41 |
+
users_df = pd.DataFrame(list(users_db.items()), columns=['username', 'password'])
|
42 |
+
users_df.to_sql('users', conn, if_exists='replace', index=False)
|
43 |
+
posts_df.to_sql('posts', conn, if_exists='replace', index=False)
|
44 |
+
comments_df.to_sql('comments', conn, if_exists='replace', index=False)
|
45 |
+
return True, "Successfully saved to SQLite."
|
46 |
+
elif storage_backend == "JSON":
|
47 |
+
with open(DB_FILE_JSON, "w") as f:
|
48 |
+
json.dump({"users": users_db, "posts": posts_df.to_dict('records'), "comments": comments_df.to_dict('records')}, f, indent=2)
|
49 |
+
return True, "Successfully saved to JSON file."
|
50 |
+
elif storage_backend == "HF_DATASET":
|
51 |
+
if not all([HF_DATASETS_AVAILABLE, HF_TOKEN, HF_DATASET_REPO]):
|
52 |
+
return False, "HF_DATASET backend is not configured correctly."
|
53 |
+
try:
|
54 |
+
print("Pushing data to Hugging Face Hub...")
|
55 |
+
dataset_dict = DatasetDict({
|
56 |
+
'users': Dataset.from_pandas(pd.DataFrame(list(users_db.items()), columns=['username', 'password'])),
|
57 |
+
'posts': Dataset.from_pandas(posts_df),
|
58 |
+
'comments': Dataset.from_pandas(comments_df)
|
59 |
+
})
|
60 |
+
dataset_dict.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN, private=True)
|
61 |
+
dirty_operations_count = 0
|
62 |
+
return True, f"Successfully pushed data to {HF_DATASET_REPO}."
|
63 |
+
except Exception as e:
|
64 |
+
return False, f"Error pushing to Hugging Face Hub: {e}"
|
65 |
+
return False, "Unknown backend."
|
66 |
+
|
67 |
+
def handle_persistence_after_change():
|
68 |
+
global dirty_operations_count
|
69 |
+
storage_backend = STORAGE_BACKEND_CONFIG
|
70 |
+
if storage_backend in ["JSON", "SQLITE"]:
|
71 |
+
force_persist_data()
|
72 |
+
elif storage_backend == "HF_DATASET":
|
73 |
+
with db_lock:
|
74 |
+
dirty_operations_count += 1
|
75 |
+
print(f"HF_DATASET: {dirty_operations_count}/{HF_BACKUP_THRESHOLD} operations until next auto-backup.")
|
76 |
+
if dirty_operations_count >= HF_BACKUP_THRESHOLD:
|
77 |
+
print(f"Threshold of {HF_BACKUP_THRESHOLD} reached. Triggering auto-backup.")
|
78 |
+
force_persist_data()
|
79 |
+
|
80 |
+
def load_data():
|
81 |
+
global STORAGE_BACKEND_CONFIG
|
82 |
+
storage_backend = STORAGE_BACKEND_CONFIG
|
83 |
+
with db_lock:
|
84 |
+
# Default empty structures
|
85 |
+
users, posts, comments = {"admin": "password"}, pd.DataFrame(columns=["post_id", "username", "content", "timestamp"]), pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp"])
|
86 |
+
|
87 |
+
if storage_backend == "SQLITE":
|
88 |
+
try:
|
89 |
+
with sqlite3.connect(DB_FILE_SQLITE) as conn:
|
90 |
+
cursor = conn.cursor()
|
91 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS users (username TEXT PRIMARY KEY, password TEXT NOT NULL)")
|
92 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS posts (post_id INTEGER PRIMARY KEY, username TEXT, content TEXT, timestamp TEXT)")
|
93 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS comments (comment_id INTEGER PRIMARY KEY, post_id INTEGER, username TEXT, content TEXT, timestamp TEXT)")
|
94 |
+
cursor.execute("INSERT OR IGNORE INTO users (username, password) VALUES (?, ?)", ("admin", "password"))
|
95 |
+
conn.commit()
|
96 |
+
users = dict(conn.execute("SELECT username, password FROM users").fetchall())
|
97 |
+
posts = pd.read_sql_query("SELECT * FROM posts", conn)
|
98 |
+
comments = pd.read_sql_query("SELECT * FROM comments", conn)
|
99 |
+
except Exception as e:
|
100 |
+
print(f"CRITICAL: Failed to load or create SQLite DB at '{DB_FILE_SQLITE}'. Falling back to RAM. Error: {e}")
|
101 |
+
STORAGE_BACKEND_CONFIG = "RAM"
|
102 |
+
|
103 |
+
elif storage_backend == "JSON":
|
104 |
+
if os.path.exists(DB_FILE_JSON):
|
105 |
+
try:
|
106 |
+
with open(DB_FILE_JSON, "r") as f:
|
107 |
+
data = json.load(f)
|
108 |
+
users, posts, comments = data.get("users", users), pd.DataFrame(data.get("posts", [])), pd.DataFrame(data.get("comments", []))
|
109 |
+
except (json.JSONDecodeError, KeyError):
|
110 |
+
print(f"Warning: JSON file '{DB_FILE_JSON}' is corrupted or empty. Starting with fresh data.")
|
111 |
+
else:
|
112 |
+
print(f"JSON file '{DB_FILE_JSON}' not found. Will be created on first change.")
|
113 |
+
|
114 |
+
elif storage_backend == "HF_DATASET":
|
115 |
+
if all([HF_DATASETS_AVAILABLE, HF_TOKEN, HF_DATASET_REPO]):
|
116 |
+
try:
|
117 |
+
print(f"Attempting to load data from HF Dataset: {HF_DATASET_REPO}")
|
118 |
+
ds_dict = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
119 |
+
users = dict(zip(ds_dict['users']['username'], ds_dict['users']['password']))
|
120 |
+
posts = ds_dict['posts'].to_pandas()
|
121 |
+
comments = ds_dict['comments'].to_pandas()
|
122 |
+
print("Successfully loaded data from HF Dataset.")
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Could not load from HF Dataset '{HF_DATASET_REPO}'. Attempting to initialize a new one. Error: {e}")
|
125 |
+
try:
|
126 |
+
user_features = Features({'username': Value('string'), 'password': Value('string')})
|
127 |
+
post_features = Features({'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
|
128 |
+
comment_features = Features({'comment_id': Value('int64'), 'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
|
129 |
+
|
130 |
+
dataset_dict = DatasetDict({
|
131 |
+
'users': Dataset.from_pandas(pd.DataFrame(list(users.items()), columns=['username', 'password']), features=user_features),
|
132 |
+
'posts': Dataset.from_pandas(posts, features=post_features),
|
133 |
+
'comments': Dataset.from_pandas(comments, features=comment_features)
|
134 |
+
})
|
135 |
+
dataset_dict.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN, private=True)
|
136 |
+
print(f"Successfully initialized new empty HF Dataset at {HF_DATASET_REPO}.")
|
137 |
+
except Exception as e_push:
|
138 |
+
print(f"CRITICAL: Failed to create new HF Dataset. Falling back to RAM for this session. Push Error: {e_push}")
|
139 |
+
STORAGE_BACKEND_CONFIG = "RAM"
|
140 |
+
else:
|
141 |
+
print("HF_DATASET backend not fully configured (check env vars and library install). Falling back to RAM for this session.")
|
142 |
+
STORAGE_BACKEND_CONFIG = "RAM"
|
143 |
+
|
144 |
+
# Final validation of DataFrame structures
|
145 |
+
if not isinstance(posts, pd.DataFrame) or "post_id" not in posts.columns:
|
146 |
+
posts = pd.DataFrame(columns=["post_id", "username", "content", "timestamp"])
|
147 |
+
if not isinstance(comments, pd.DataFrame) or "comment_id" not in comments.columns:
|
148 |
+
comments = pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp"])
|
149 |
+
|
150 |
+
post_counter = int(posts['post_id'].max()) if not posts.empty else 0
|
151 |
+
comment_counter = int(comments['comment_id'].max()) if not comments.empty else 0
|
152 |
+
return users, posts, comments, post_counter, comment_counter
|
153 |
+
|
154 |
+
users_db, posts_df, comments_df, post_counter, comment_counter = load_data()
|
155 |
+
|
156 |
+
# --- API Functions ---
|
157 |
+
def api_register(username, password):
|
158 |
+
if not username or not password: return "[Auth API] Failed: Username/password cannot be empty."
|
159 |
+
with db_lock:
|
160 |
+
if username in users_db: return f"[Auth API] Failed: Username '{username}' already exists."
|
161 |
+
users_db[username] = password
|
162 |
+
handle_persistence_after_change()
|
163 |
+
return f"[Auth API] Success: User '{username}' registered."
|
164 |
+
|
165 |
+
def api_login(username, password):
|
166 |
+
return f"{username}:{password}" if username in users_db and users_db.get(username) == password else "[Auth API] Failed: Invalid credentials."
|
167 |
+
|
168 |
+
def _get_user_from_token(auth_token):
|
169 |
+
if not auth_token or ':' not in auth_token: return None
|
170 |
+
try:
|
171 |
+
username, password = auth_token.split(':', 1)
|
172 |
+
return username if username in users_db and users_db.get(username) == password else None
|
173 |
+
except (ValueError, TypeError): return None
|
174 |
+
|
175 |
+
def api_create_post(auth_token, content):
|
176 |
+
global posts_df, post_counter
|
177 |
+
username = _get_user_from_token(auth_token)
|
178 |
+
if not username: return "[Post API] Failed: Invalid auth token."
|
179 |
+
if not content or not content.strip(): return "[Post API] Failed: Post content cannot be empty."
|
180 |
+
with db_lock:
|
181 |
+
post_counter += 1
|
182 |
+
new_post = pd.DataFrame([{"post_id": post_counter, "username": username, "content": content, "timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")}])
|
183 |
+
posts_df = pd.concat([posts_df, new_post], ignore_index=True)
|
184 |
+
handle_persistence_after_change()
|
185 |
+
return f"[Post API] Success: Post created with ID {post_counter}."
|
186 |
+
|
187 |
+
def api_create_comment(auth_token, post_id, content):
|
188 |
+
global comments_df, comment_counter
|
189 |
+
username = _get_user_from_token(auth_token)
|
190 |
+
if not username: return "[Comment API] Failed: Invalid auth token."
|
191 |
+
if not content or not content.strip(): return "[Comment API] Failed: Comment content cannot be empty."
|
192 |
+
with db_lock:
|
193 |
+
try: target_post_id = int(post_id)
|
194 |
+
except (ValueError, TypeError): return f"[Comment API] Failed: Post ID must be a number."
|
195 |
+
if target_post_id not in posts_df['post_id'].values: return f"[Comment API] Failed: Post with ID {post_id} not found."
|
196 |
+
comment_counter += 1
|
197 |
+
new_comment = pd.DataFrame([{"comment_id": comment_counter, "post_id": target_post_id, "username": username, "content": content, "timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")}])
|
198 |
+
comments_df = pd.concat([comments_df, new_comment], ignore_index=True)
|
199 |
+
handle_persistence_after_change()
|
200 |
+
return f"[Comment API] Success: Comment created on post {post_id}."
|
201 |
+
|
202 |
+
def api_get_feed(search_query: str = None):
|
203 |
+
with db_lock:
|
204 |
+
current_posts, current_comments = posts_df.copy(), comments_df.copy()
|
205 |
+
if current_posts.empty: return pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
206 |
+
display_posts = current_posts[current_posts['content'].str.contains(search_query, case=False, na=False)] if search_query and not search_query.isspace() else current_posts
|
207 |
+
sorted_posts = display_posts.sort_values(by="timestamp", ascending=False)
|
208 |
+
feed_data = [{"post_id": post['post_id'], "username": post['username'], "content": post['content'], "timestamp": post['timestamp'], "comments": "\n".join([f" - @{c['username']}: {c['content']}" for _, c in current_comments[current_comments['post_id'] == post['post_id']].iterrows()])} for _, post in sorted_posts.iterrows()]
|
209 |
+
return pd.DataFrame(feed_data) if feed_data else pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
210 |
+
|
211 |
+
# --- UI Helper Functions ---
|
212 |
+
def ui_manual_post(username, password, content):
|
213 |
+
if not username or not password:
|
214 |
+
return "Username and password are required.", api_get_feed()
|
215 |
+
auth_token = api_login(username, password)
|
216 |
+
if "Failed" in auth_token:
|
217 |
+
return "Login failed. Check credentials.", api_get_feed()
|
218 |
+
result = api_create_post(auth_token, content)
|
219 |
+
return result, api_get_feed()
|
220 |
+
|
221 |
+
def ui_manual_comment(username, password, post_id, content):
|
222 |
+
if not username or not password:
|
223 |
+
return "Username and password are required.", api_get_feed()
|
224 |
+
auth_token = api_login(username, password)
|
225 |
+
if "Failed" in auth_token:
|
226 |
+
return "Login failed. Check credentials.", api_get_feed()
|
227 |
+
result = api_create_comment(auth_token, post_id, content)
|
228 |
+
return result, api_get_feed()
|
229 |
+
|
230 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
231 |
+
gr.Markdown("# Dummy Social Media Platform")
|
232 |
+
gr.Markdown(f"This app provides an API for iLearn agents to interact with. **Storage Backend: `{STORAGE_BACKEND_CONFIG}`**")
|
233 |
+
|
234 |
+
with gr.Tabs():
|
235 |
+
with gr.TabItem("Live Feed"):
|
236 |
+
feed_df_display = gr.DataFrame(label="Feed", headers=["post_id", "username", "content", "timestamp", "comments"], interactive=False, wrap=True)
|
237 |
+
refresh_btn = gr.Button("Refresh Feed")
|
238 |
+
|
239 |
+
with gr.TabItem("Manual Actions & Settings"):
|
240 |
+
manual_action_status = gr.Textbox(label="Action Status", interactive=False)
|
241 |
+
with gr.Row():
|
242 |
+
with gr.Group():
|
243 |
+
gr.Markdown("### Manually Create Post")
|
244 |
+
post_user = gr.Textbox(label="Username", value="admin")
|
245 |
+
post_pass = gr.Textbox(label="Password", type="password", value="password")
|
246 |
+
post_content = gr.Textbox(label="Post Content", lines=3, placeholder="What's on your mind?")
|
247 |
+
post_button = gr.Button("Submit Post", variant="primary")
|
248 |
+
with gr.Group():
|
249 |
+
gr.Markdown("### Manually Create Comment")
|
250 |
+
comment_user = gr.Textbox(label="Username", value="admin")
|
251 |
+
comment_pass = gr.Textbox(label="Password", type="password", value="password")
|
252 |
+
comment_post_id = gr.Number(label="Target Post ID", precision=0)
|
253 |
+
comment_content = gr.Textbox(label="Comment Content", lines=2, placeholder="Add a comment...")
|
254 |
+
comment_button = gr.Button("Submit Comment", variant="primary")
|
255 |
+
with gr.Group():
|
256 |
+
gr.Markdown("### Settings")
|
257 |
+
feed_refresh_interval_slider = gr.Slider(minimum=5, maximum=120, value=15, step=5, label="Feed Refresh Interval (seconds)")
|
258 |
+
|
259 |
+
with gr.TabItem("Admin", visible=(STORAGE_BACKEND_CONFIG == "HF_DATASET")):
|
260 |
+
gr.Markdown("### Hugging Face Dataset Control")
|
261 |
+
backup_btn = gr.Button("Force Backup to Hugging Face Hub", visible=not DEMO_MODE)
|
262 |
+
backup_status = gr.Textbox(label="Backup Status", interactive=False)
|
263 |
+
|
264 |
+
# Event Handlers
|
265 |
+
post_button.click(
|
266 |
+
fn=ui_manual_post,
|
267 |
+
inputs=[post_user, post_pass, post_content],
|
268 |
+
outputs=[manual_action_status, feed_df_display]
|
269 |
+
)
|
270 |
+
comment_button.click(
|
271 |
+
fn=ui_manual_comment,
|
272 |
+
inputs=[comment_user, comment_pass, comment_post_id, comment_content],
|
273 |
+
outputs=[manual_action_status, feed_df_display]
|
274 |
+
)
|
275 |
+
|
276 |
+
last_refresh = time.time()
|
277 |
+
def timed_feed_refresh(interval):
|
278 |
+
global last_refresh
|
279 |
+
if time.time() - last_refresh > interval:
|
280 |
+
last_refresh = time.time()
|
281 |
+
return api_get_feed()
|
282 |
+
return gr.update()
|
283 |
+
|
284 |
+
# A fast-ticking timer that calls our function. The function itself decides if it's time to refresh.
|
285 |
+
gr.Timer(1).tick(
|
286 |
+
fn=timed_feed_refresh,
|
287 |
+
inputs=[feed_refresh_interval_slider],
|
288 |
+
outputs=[feed_df_display]
|
289 |
+
)
|
290 |
+
|
291 |
+
refresh_btn.click(api_get_feed, None, feed_df_display)
|
292 |
+
|
293 |
+
def admin_backup_handler():
|
294 |
+
success, message = force_persist_data()
|
295 |
+
return message
|
296 |
+
|
297 |
+
if STORAGE_BACKEND_CONFIG == "HF_DATASET":
|
298 |
+
backup_btn.click(admin_backup_handler, None, backup_status)
|
299 |
+
|
300 |
+
demo.load(api_get_feed, None, feed_df_display)
|
301 |
+
|
302 |
+
# Hidden API interfaces for the agent
|
303 |
+
with gr.Column(visible=False if DEMO_MODE else True):
|
304 |
+
for name, func, inputs, outputs in [
|
305 |
+
("register", api_register, ["text", gr.Textbox(type="password")], "text"),
|
306 |
+
("login", api_login, ["text", gr.Textbox(type="password")], "text"),
|
307 |
+
("create_post", api_create_post, ["text", "text"], "text"),
|
308 |
+
("create_comment", api_create_comment, ["text", "number", "text"], "text"),
|
309 |
+
("get_feed", api_get_feed, ["text"], "dataframe")
|
310 |
+
]:
|
311 |
+
gr.Interface(func, inputs, outputs, api_name=name, allow_flagging="never")
|
312 |
+
|
313 |
+
if __name__ == "__main__":
|
314 |
+
print(f"Starting Social Media App server with {STORAGE_BACKEND_CONFIG} backend.")
|
315 |
+
if STORAGE_BACKEND_CONFIG == "HF_DATASET" and not HF_DATASETS_AVAILABLE:
|
316 |
+
print("\nWARNING: 'datasets' library not found. Please run `pip install datasets huggingface_hub` to use the HF_DATASET backend.\n")
|
317 |
+
app_port = int(os.getenv("GRADIO_PORT", 7860))
|
318 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=app_port, share=False)
|