Spaces:
Sleeping
Sleeping
File size: 32,773 Bytes
f80bb4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
import gradio as gr
import re
import json
import requests
import os
import tempfile
from bs4 import BeautifulSoup # For web scraping
from newspaper import Article # For smarter article extraction
from tavily import TavilyClient # For web search
# --- build_logic.py is NO LONGER a hard requirement for the research agent core ---
# We might repurpose some utility functions or remove its direct use if focusing purely on research.
# For this transformation, we'll comment out most build_logic specific interactions
# but keep parsing functions if they are general enough.
# from build_logic import (
# create_space as build_logic_create_space,
# _get_api_token as build_logic_get_api_token,
# whoami as build_logic_whoami,
# list_space_files_for_browsing,
# get_space_repository_info,
# get_space_file_content,
# update_space_file,
# parse_markdown as build_logic_parse_markdown, # May still be useful for report generation
# delete_space_file as build_logic_delete_space_file,
# get_space_runtime_status
# )
# print("build_logic.py related functions commented out for Research Agent mode.")
# --- End build_logic import ---
bbb = chr(96) * 3
parsed_research_outputs_cache = [] # Renamed from parsed_code_blocks_state_cache
BOT_ROLE_NAME = "assistant" # LLM's role
TOOL_ROLE_NAME = "tool" # Role for tool execution results
GROQ_API_ENDPOINT = "https://api.groq.com/openai/v1/chat/completions"
MAX_WEBPAGE_CONTENT_LENGTH = 6000 # Max characters to extract from a webpage
MAX_SEARCH_RESULTS_TO_PROCESS = 3 # Max search results to browse by default
# --- New System Prompt for Research Agent ---
DEFAULT_SYSTEM_PROMPT = f"""You are an expert AI Research Assistant. Your goal is to answer user questions and perform research tasks by intelligently using the tools available to you.
Available Tools:
1. **`search_web`**: Use this tool to search the internet for information.
- Input: A JSON object with a "query" key (e.g., `{{"query": "latest advancements in AI"}}`)
2. **`browse_web_page`**: Use this tool to get the content of a specific URL.
- Input: A JSON object with a "url" key (e.g., `{{"url": "https://example.com/article"}}`)
Tool Usage Instructions:
- When you need to use a tool, respond ONLY with a JSON object describing the tool call.
Example for search:
`{{"tool_calls": [{{"id": "call_abc123", "type": "function", "function": {{"name": "search_web", "arguments": "{{\\"query\\": \\"your search query\\"}}"}}}}]}}`
Example for browsing a URL:
`{{"tool_calls": [{{"id": "call_xyz789", "type": "function", "function": {{"name": "browse_web_page", "arguments": "{{\\"url\\": \\"https://www.example.com/page\\"}}"}}}}]}}`
- The `id` for the tool call should be unique for each call, e.g., "call_randomstring123".
- After you make a tool call, the system will execute it and provide you with the results. You should then use these results to formulate your answer or decide on the next step.
- If you have enough information from the conversation history or the previous tool responses to answer the user's query, provide a comprehensive answer directly.
- When providing an answer, cite your sources (URLs) if you used information from specific web pages.
- If a web search returns multiple promising links, you might need to use `browse_web_page` on a few of them to gather more detailed information. Prioritize relevant and reputable sources.
- If a webpage is too long or you cannot access it, note that in your reasoning.
- If the user's request is ambiguous, ask clarifying questions.
- The role name for your responses in the chat history must be '{BOT_ROLE_NAME}'.
Output Format for Final Answers (not tool calls):
- Provide clear, concise, and well-structured answers.
- If you are summarizing information from web pages, mention the source URLs.
- Example:
"Based on my research:
- Finding 1 (Source: [url1])
- Finding 2 (Source: [url2])
For more details, you can visit the source pages."
File/Report Generation (Optional - if you generate a structured report):
If you generate a structured text report, use this format:
### Report: research_summary.md
{bbb}markdown
# Research Topic: [User's Query]
## Key Findings:
- Point 1
- Point 2
## Detailed Information:
### [Source Title 1 (URL)]
- Summary of content from this source...
### [Source Title 2 (URL)]
- Summary of content from this source...
{bbb}
"""
# --- Core Utility, Parsing, API Call functions (some adapted) ---
def escape_html_for_markdown(text):
if not isinstance(text, str): return ""
return text.replace("&", "&").replace("<", "<").replace(">", ">")
# _infer_lang_from_filename might be less used, but kept for potential report formatting
def _infer_lang_from_filename(filename):
# ... (keep existing implementation, it's fine)
if not filename: return "plaintext"
if '.' in filename:
ext = filename.split('.')[-1].lower()
mapping = {
'py': 'python', 'js': 'javascript', 'ts': 'typescript', 'jsx': 'javascript', 'tsx': 'typescript',
'html': 'html', 'htm': 'html', 'css': 'css', 'scss': 'scss', 'sass': 'sass', 'less': 'less',
'json': 'json', 'xml': 'xml', 'yaml': 'yaml', 'yml': 'yaml', 'toml': 'toml',
'md': 'markdown', 'rst': 'rst',
'sh': 'bash', 'bash': 'bash', 'zsh': 'bash', 'bat': 'batch', 'cmd': 'batch', 'ps1': 'powershell',
'c': 'c', 'h': 'c', 'cpp': 'cpp', 'hpp': 'cpp', 'cs': 'csharp', 'java': 'java',
'rb': 'ruby', 'php': 'php', 'go': 'go', 'rs': 'rust', 'swift': 'swift', 'kt': 'kotlin', 'kts': 'kotlin',
'sql': 'sql', 'dockerfile': 'docker', 'tf': 'terraform', 'hcl': 'terraform',
'txt': 'plaintext', 'log': 'plaintext', 'ini': 'ini', 'conf': 'plaintext', 'cfg': 'plaintext',
'csv': 'plaintext', 'tsv': 'plaintext', 'err': 'plaintext',
'.env': 'plaintext', '.gitignore': 'plaintext', '.npmrc': 'plaintext', '.gitattributes': 'plaintext',
'makefile': 'makefile',
}
return mapping.get(ext, "plaintext")
base_filename = os.path.basename(filename)
if base_filename == 'Dockerfile': return 'docker'
if base_filename == 'Makefile': return 'makefile'
if base_filename.startswith('.'): return 'plaintext'
return "plaintext"
# _clean_filename might be less used if not parsing filenames from LLM for code
def _clean_filename(filename_line_content):
# ... (keep existing implementation, it's fine)
text = filename_line_content.strip()
text = re.sub(r'[`\*_]+', '', text) # Remove markdown emphasis characters
path_match = re.match(r'^([\w\-\.\s\/\\]+)', text)
if path_match:
parts = re.split(r'\s*\(', path_match.group(1).strip(), 1)
return parts[0].strip() if parts else ""
backtick_match = re.search(r'`([^`]+)`', text)
if backtick_match:
potential_fn = backtick_match.group(1).strip()
parts = re.split(r'\s*\(|\s{2,}', potential_fn, 1)
cleaned_fn = parts[0].strip() if parts else ""
cleaned_fn = cleaned_fn.strip('`\'":;,')
if cleaned_fn: return cleaned_fn
parts = re.split(r'\s*\(|\s{2,}', text, 1)
filename_candidate = parts[0].strip() if parts else text.strip()
filename_candidate = filename_candidate.strip('`\'":;,')
return filename_candidate if filename_candidate else text.strip()
# _parse_chat_stream_logic: Adapting for potential structured report output from LLM
def _parse_chat_stream_logic(chat_json_string, existing_outputs_state=None):
global parsed_research_outputs_cache
latest_outputs_dict = {}
if existing_outputs_state:
for item in existing_outputs_state: latest_outputs_dict[item["filename"]] = item.copy()
results = {"parsed_outputs": [], "preview_md": "", "error_message": None}
try:
ai_chat_history = json.loads(chat_json_string)
if not isinstance(ai_chat_history, list): raise ValueError("JSON input must be a list of chat messages.")
except json.JSONDecodeError as e: results["error_message"] = f"JSON Parsing Error: {e}."; return results
except ValueError as e: results["error_message"] = str(e); return results
message_obj = None
if ai_chat_history and isinstance(ai_chat_history[-1], dict) and ai_chat_history[-1].get("role", "").lower() == BOT_ROLE_NAME:
message_obj = ai_chat_history[-1]
if not message_obj:
results["parsed_outputs"] = list(latest_outputs_dict.values())
return results
role, content = message_obj.get("role", "").lower(), message_obj.get("content", "")
# Check for report format
report_pattern = re.compile(r"### Report:\s*(?P<filename_line>[^\n]+)\n```(?P<lang>[\w\.\-\+]*)\n(?P<code>[\s\S]*?)\n```")
if role == BOT_ROLE_NAME:
for match in report_pattern.finditer(content):
filename = _clean_filename(match.group("filename_line"))
if not filename: continue
lang, code_block = match.group("lang"), match.group("code")
item_data = {
"filename": filename,
"code": code_block.strip(),
"language": (lang.strip().lower() if lang else _infer_lang_from_filename(filename)),
"is_report": True
}
latest_outputs_dict[filename] = item_data # Overwrite if exists
current_parsed_outputs = list(latest_outputs_dict.values())
parsed_research_outputs_cache = current_parsed_outputs # Update global cache
results["parsed_outputs"] = current_parsed_outputs
return results
# _generate_ui_outputs_from_cache: Adapting for research reports
def _generate_ui_outputs_from_cache():
global parsed_research_outputs_cache
preview_md_val = "*No structured reports generated by AI yet.*"
formatted_md_val = "# Research Agent Output\n\n*No structured reports generated yet.*"
download_file = None
if parsed_research_outputs_cache:
preview_md_lines = ["## Generated Reports/Structured Outputs:"]
main_report_content = ""
for item in parsed_research_outputs_cache:
if item.get("is_report"):
preview_md_lines.append(f"\n----\n**Report:** `{escape_html_for_markdown(item['filename'])}` (Language: `{item['language']}`)\n")
preview_md_lines.append(f"\n{bbb}{item.get('language', 'plaintext') or 'plaintext'}\n{item.get('code','')}\n{bbb}\n")
if not main_report_content: # Take the first report as the main one for formatted output
main_report_content = f"# Report: {item['filename']}\n\n{bbb}{item.get('language', 'plaintext') or 'plaintext'}\n{item.get('code','')}\n{bbb}"
preview_md_val = "\n".join(preview_md_lines)
if main_report_content:
formatted_md_val = main_report_content
try:
# Use the report filename for download if available, else generic
report_filename_for_download = "research_report.md"
if parsed_research_outputs_cache and parsed_research_outputs_cache[0].get("filename"):
report_filename_for_download = parsed_research_outputs_cache[0]["filename"]
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", prefix=report_filename_for_download.split('.')[0] + "_", encoding='utf-8') as tmpfile:
tmpfile.write(main_report_content); download_file = tmpfile.name
except Exception as e: print(f"Error creating temp file for report: {e}")
else: # if no structured report, but there's other content in cache (future use)
formatted_md_val = "# Research Agent Output\n\n*No specific report found, showing raw cache if any.*"
# Potentially list other non-report items here if the cache structure evolves
return formatted_md_val, preview_md_val, gr.update(value=download_file, interactive=download_file is not None)
def _convert_gr_history_to_api_messages(system_prompt, gr_history, current_user_message=None):
messages = [{"role": "system", "content": system_prompt}] if system_prompt else []
for user_msg, bot_msg_or_tool_resp in gr_history:
if user_msg: messages.append({"role": "user", "content": user_msg})
if bot_msg_or_tool_resp:
# Check if it's a tool call from the assistant or a tool response
try:
# Attempt to parse as JSON, if it's a tool_calls object from assistant
# or a tool response object we constructed.
potential_json = json.loads(bot_msg_or_tool_resp)
if isinstance(potential_json, dict) and "tool_calls" in potential_json and isinstance(potential_json["tool_calls"], list):
# This is an assistant's message with tool calls
messages.append({
"role": BOT_ROLE_NAME,
"content": None, # OpenAI expects content to be null for tool_calls only message
"tool_calls": potential_json["tool_calls"]
})
elif isinstance(potential_json, dict) and "tool_call_id" in potential_json and "role" in potential_json and potential_json["role"] == TOOL_ROLE_NAME:
# This is a tool response message we constructed
messages.append(potential_json) # Already in correct format
else: # Not a special JSON, treat as regular bot message
messages.append({"role": BOT_ROLE_NAME, "content": str(bot_msg_or_tool_resp)})
except json.JSONDecodeError: # Not JSON, treat as regular bot message
messages.append({"role": BOT_ROLE_NAME, "content": str(bot_msg_or_tool_resp)})
if current_user_message: messages.append({"role": "user", "content": current_user_message})
return messages
# --- New Tool Functions ---
def search_web(query: str, tavily_api_key: str):
"""Performs a web search using Tavily API."""
if not tavily_api_key:
return json.dumps({"error": "Tavily API key not provided."})
try:
client = TavilyClient(api_key=tavily_api_key)
response = client.search(query=query, search_depth="basic", max_results=5) # basic is often enough
# `response` includes 'results' which is a list of dicts: {'title': ..., 'url': ..., 'content': ...}
# We'll return the stringified JSON of results for the LLM.
return json.dumps(response.get("results", []))
except Exception as e:
return json.dumps({"error": f"Tavily search failed: {str(e)}"})
def browse_web_page(url: str):
"""Fetches and extracts text content from a web page."""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
# Try Newspaper3k first for cleaner article text
try:
article = Article(url)
article.download(input_html=response.content) # Pass downloaded HTML
article.parse()
content = article.text
if content and len(content.strip()) > 100: # If newspaper got good content
return json.dumps({"url": url, "content": content[:MAX_WEBPAGE_CONTENT_LENGTH]})
except Exception as e:
print(f"Newspaper3k failed for {url}: {e}. Falling back to BeautifulSoup.")
# Fallback to BeautifulSoup if Newspaper3k fails or gets minimal content
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script_or_style in soup(["script", "style"]):
script_or_style.decompose()
text = soup.get_text(separator='\n', strip=True)
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
if not text:
return json.dumps({"url": url, "content": "[No text content found or page is primarily non-textual]"})
return json.dumps({"url": url, "content": text[:MAX_WEBPAGE_CONTENT_LENGTH]})
except requests.exceptions.RequestException as e:
return json.dumps({"url": url, "error": f"Failed to fetch URL: {str(e)}"})
except Exception as e:
return json.dumps({"url": url, "error": f"Error processing page: {str(e)}"})
available_tools = {
"search_web": search_web,
"browse_web_page": browse_web_page,
}
# --- Main Chat Handler ---
def handle_research_chat_submit(user_message, chat_history, groq_api_key, tavily_api_key, model_select, system_prompt):
global parsed_research_outputs_cache
_chat_msg_in, _chat_hist, _status = "", list(chat_history), "Initializing..."
_detected_outputs_update, _formatted_output_update, _download_btn_update = gr.update(), gr.update(), gr.update(interactive=False, value=None)
if not user_message.strip():
_status = "Cannot send an empty message."
yield (user_message, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update); return
_chat_hist.append((user_message, None))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
effective_groq_api_key = groq_api_key or os.environ.get("GROQ_API_KEY")
effective_tavily_api_key = tavily_api_key or os.environ.get("TAVILY_API_KEY")
if not effective_groq_api_key:
_chat_hist[-1] = (user_message, "Error: Groq API Key not set."); _status = "Groq API Key missing."
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update); return
current_sys_prompt = system_prompt.strip() or DEFAULT_SYSTEM_PROMPT
# Tool definitions for the API
tools_for_api = [
{
"type": "function",
"function": {
"name": "search_web",
"description": "Searches the web for a given query using Tavily.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query."},
},
"required": ["query"],
},
},
},
{
"type": "function",
"function": {
"name": "browse_web_page",
"description": "Fetches and extracts text content from a given URL.",
"parameters": {
"type": "object",
"properties": {
"url": {"type": "string", "description": "The URL of the web page to browse."},
},
"required": ["url"],
},
},
},
]
# Convert current chat history for API
# For the first message from user, history is _chat_hist[:-1] and current_user_message is user_message
api_msgs = _convert_gr_history_to_api_messages(current_sys_prompt, _chat_hist[:-1], user_message)
max_tool_iterations = 5 # Prevent infinite loops
current_iteration = 0
while current_iteration < max_tool_iterations:
current_iteration += 1
headers = {"Authorization": f"Bearer {effective_groq_api_key}", "Content-Type": "application/json"}
payload = {"model": model_select, "messages": api_msgs, "tools": tools_for_api, "tool_choice": "auto"}
try:
_status = f"Waiting for {model_select} (Iteration {current_iteration})...";
# Update chat history for streaming intermediate status to user
if _chat_hist[-1] and _chat_hist[-1][1] is None : # If last bot message is empty (first iteration of this turn)
_chat_hist[-1] = (_chat_hist[-1][0], f"<i>{_status}</i>")
else: # If there's already a bot message (e.g. tool response was added)
_chat_hist.append((None, f"<i>{_status}</i>"))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
response = requests.post(GROQ_API_ENDPOINT, headers=headers, json=payload, timeout=180)
response.raise_for_status()
api_resp_json = response.json()
# Clean up "Waiting..." message from history if a real response is coming
if _chat_hist and _chat_hist[-1][1] and _chat_hist[-1][1].startswith("<i>Waiting for"):
if _chat_hist[-1][0] is None: # It was a status-only message
_chat_hist.pop()
else: # It was part of a user-bot turn
_chat_hist[-1] = (_chat_hist[-1][0], None) # Clear the status for now
if not api_resp_json.get("choices") or not api_resp_json["choices"][0]:
raise ValueError("API response missing choices.")
message = api_resp_json["choices"][0].get("message")
finish_reason = api_resp_json["choices"][0].get("finish_reason")
if not message:
raise ValueError("API response missing message object in choice.")
# Add assistant's response (or tool call) to API message list for next potential iteration
api_msgs.append(message)
if message.get("tool_calls"):
_status = "AI requested to use tools. Executing..."
# Store the tool call request itself in chat history for visibility
# The actual tool response will be added later.
tool_call_request_str = json.dumps({"tool_calls": message["tool_calls"]})
if _chat_hist[-1] and _chat_hist[-1][1] is None:
_chat_hist[-1] = (_chat_hist[-1][0], f"π€ Requesting tools:\n```json\n{tool_call_request_str}\n```")
else:
_chat_hist.append((None, f"π€ Requesting tools:\n```json\n{tool_call_request_str}\n```"))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
for tool_call in message["tool_calls"]:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
tool_call_id = tool_call["id"]
if function_name not in available_tools:
tool_response_content = json.dumps({"error": f"Tool '{function_name}' not found."})
_status = f"Error: Tool '{function_name}' not found."
else:
_status = f"Executing tool: {function_name} with args: {function_args}"
# Update chat history with tool execution status
_chat_hist.append((None, f"π οΈ Executing: {function_name}({json.dumps(function_args)})"))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
tool_function = available_tools[function_name]
if function_name == "search_web":
if not effective_tavily_api_key:
tool_response_content = json.dumps({"error": "Tavily API key not configured by user."})
_status = "Error: Tavily API Key not set by user."
else:
tool_response_content = tool_function(query=function_args["query"], tavily_api_key=effective_tavily_api_key)
elif function_name == "browse_web_page":
tool_response_content = tool_function(url=function_args["url"])
else: # Should not happen if function_name in available_tools
tool_response_content = json.dumps({"error": "Unknown tool execution path."})
# Add tool response to API message list for LLM
tool_response_message = {
"tool_call_id": tool_call_id,
"role": TOOL_ROLE_NAME,
"name": function_name,
"content": tool_response_content, # This is the JSON string result from the tool
}
api_msgs.append(tool_response_message)
# Add tool response to Gradio chat history for visibility
# Truncate long content for display
display_content = tool_response_content
if len(display_content) > 500:
display_content = display_content[:500] + "... (truncated for display)"
_chat_hist.append((None, f"βοΈ Tool Result ({function_name}):\n```json\n{display_content}\n```" ))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
# If finish_reason is 'tool_calls', continue loop to let LLM process tool results
if finish_reason == "tool_calls":
continue
else: # LLM decided to call tool AND respond in same turn (unusual for OpenAI spec but handle)
if message.get("content"):
bot_response_actual = message.get("content", "")
_chat_hist.append((None, bot_response_actual)) # Add the text response as well
break # Exit loop as LLM also provided content
else: # Only tool calls, continue loop
continue
elif message.get("content"): # Standard text response from LLM
bot_response_actual = message.get("content", "")
if _chat_hist[-1] and _chat_hist[-1][1] is None :
_chat_hist[-1] = (_chat_hist[-1][0], bot_response_actual)
else:
_chat_hist.append((None, bot_response_actual))
_status = "AI response received."
# Try to parse for structured reports
latest_bot_message_json = json.dumps([{"role": BOT_ROLE_NAME, "content": bot_response_actual}], indent=2)
parsing_res = _parse_chat_stream_logic(latest_bot_message_json, existing_outputs_state=parsed_research_outputs_cache)
if parsing_res["error_message"]:
_status = f"Parsing Error: {parsing_res['error_message']}"
_detected_outputs_update = gr.Markdown(f"## Parsing Error\n`{escape_html_for_markdown(parsing_res['error_message'])}`")
else:
_formatted_output_update, _detected_outputs_update, _download_btn_update = _generate_ui_outputs_from_cache()
_status = "Processing complete. Previews updated."
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
return # End of processing for this user message
else: # No tool_calls and no content, unusual
_status = "AI response was empty or malformed."
_chat_hist.append((None, f"<i>{_status}</i>"))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
return
except requests.exceptions.HTTPError as e: error_msg = f"API HTTP Error: {e} - {e.response.text if e.response else 'No details'}"
except requests.exceptions.RequestException as e: error_msg = f"API Request Error: {e}"
except Exception as e: error_msg = f"Unexpected error in chat submit: {str(e)}"
# Error handling for the loop
_chat_hist.append((None, error_msg))
_status = error_msg
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
return # Exit on error
if current_iteration >= max_tool_iterations:
_status = "Max tool iterations reached. AI may be in a loop."
_chat_hist.append((None, f"<i>{_status}</i>"))
yield (_chat_msg_in, _chat_hist, _status, _detected_outputs_update, _formatted_output_update, _download_btn_update)
# --- UI Definition ---
custom_theme = gr.themes.Base(primary_hue="teal", secondary_hue="purple", neutral_hue="zinc", text_size="sm", spacing_size="md", radius_size="sm", font=["System UI", "sans-serif"])
custom_css = """ /* ... (Your existing CSS, it's good) ... */ """ # Keep your CSS
with gr.Blocks(theme=custom_theme, css=custom_css) as demo:
gr.Markdown("# π Internet Research Mega Agent")
gr.Markdown("Ask questions or research topics. The AI will use web search and browsing tools to find answers.")
with gr.Row():
with gr.Sidebar():
gr.Markdown("## βοΈ Configuration")
with gr.Group():
gr.Markdown("### API Keys")
groq_api_key_input = gr.Textbox(label="Groq API Key", type="password", placeholder="gsk_...", info="Needed for LLM.")
tavily_api_key_input = gr.Textbox(label="Tavily API Key", type="password", placeholder="tvly-...", info="Needed for web search tool.")
with gr.Group():
gr.Markdown("### AI Model Settings")
groq_model_select = gr.Dropdown(label="Groq Model", choices=["mixtral-8x7b-32768", "llama3-8b-8192", "llama3-70b-8192", "gemma-7b-it"], value="llama3-70b-8192", info="Llama3-70b is recommended for better reasoning with tools.")
groq_system_prompt_input = gr.Textbox(label="System Prompt", lines=10, value=DEFAULT_SYSTEM_PROMPT, interactive=True)
with gr.Column(scale=3):
gr.Markdown("## π¬ AI Research Assistant Chat")
research_chatbot_display = gr.Chatbot(label="AI Research Chat", height=500, bubble_full_width=False, avatar_images=(None, "https://raw.githubusercontent.com/groq/groq-api-cookbook/main/groq.png"))
with gr.Row():
research_chat_message_input = gr.Textbox(show_label=False, placeholder="Ask your research question...", scale=7)
research_send_chat_button = gr.Button("Send", variant="primary", scale=1, size="lg")
research_status_output = gr.Textbox(label="Agent Status", interactive=False, lines=1, value="Ready.")
gr.Markdown("---")
with gr.Tabs():
with gr.TabItem("π Generated Report/Output"):
gr.Markdown("If the AI generates a structured report, it will appear here.")
formatted_research_output_display = gr.Textbox(label="Current Research Report", lines=15, interactive=True, show_copy_button=True, value="*Research reports will appear here...*")
download_report_button = gr.DownloadButton(label="Download Report", interactive=False, size="sm")
with gr.TabItem("π Intermediate Outputs Preview"):
detected_outputs_preview = gr.Markdown(value="*Intermediate outputs or tool call details might show here...*")
# --- Event Handlers ---
chat_outputs = [research_chat_message_input, research_chatbot_display, research_status_output, detected_outputs_preview, formatted_research_output_display, download_report_button]
chat_inputs = [research_chat_message_input, research_chatbot_display, groq_api_key_input, tavily_api_key_input, groq_model_select, groq_system_prompt_input]
research_send_chat_button.click(fn=handle_research_chat_submit, inputs=chat_inputs, outputs=chat_outputs)
research_chat_message_input.submit(fn=handle_research_chat_submit, inputs=chat_inputs, outputs=chat_outputs)
# Removed Hugging Face specific buttons and their handlers:
# - load_space_button, build_space_button, refresh_status_button
# - file_browser_dropdown, file_content_editor, commit_message_input, update_file_button, delete_file_button
# And their corresponding output components if they are not repurposed.
if __name__ == "__main__":
# For local testing, you might set API keys as environment variables or directly in the script for convenience (not recommended for sharing)
# os.environ["GROQ_API_KEY"] = "your_groq_key"
# os.environ["TAVILY_API_KEY"] = "your_tavily_key"
demo.launch(debug=True, share=False) |