Spaces:
Sleeping
Sleeping
Update model_logic.py
Browse files- model_logic.py +368 -263
model_logic.py
CHANGED
@@ -1,7 +1,12 @@
|
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
import json
|
4 |
import logging
|
|
|
|
|
|
|
|
|
5 |
|
6 |
logging.basicConfig(
|
7 |
level=logging.INFO,
|
@@ -9,15 +14,16 @@ logging.basicConfig(
|
|
9 |
)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
"GROQ": 'GROQ_API_KEY',
|
15 |
"OPENROUTER": 'OPENROUTER_API_KEY',
|
16 |
"TOGETHERAI": 'TOGETHERAI_API_KEY',
|
17 |
"COHERE": 'COHERE_API_KEY',
|
18 |
"XAI": 'XAI_API_KEY',
|
19 |
"OPENAI": 'OPENAI_API_KEY',
|
20 |
-
"GOOGLE": 'GOOGLE_API_KEY',
|
21 |
}
|
22 |
|
23 |
API_URLS = {
|
@@ -25,12 +31,13 @@ API_URLS = {
|
|
25 |
"GROQ": 'https://api.groq.com/openai/v1/chat/completions',
|
26 |
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
|
27 |
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
|
28 |
-
"COHERE": 'https://api.cohere.ai/v1/chat',
|
29 |
"XAI": 'https://api.x.ai/v1/chat/completions',
|
30 |
"OPENAI": 'https://api.openai.com/v1/chat/completions',
|
31 |
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/',
|
32 |
}
|
33 |
|
|
|
34 |
MODELS_BY_PROVIDER = {
|
35 |
"groq": {
|
36 |
"default": "llama3-8b-8192",
|
@@ -42,15 +49,20 @@ MODELS_BY_PROVIDER = {
|
|
42 |
}
|
43 |
},
|
44 |
"openrouter": {
|
45 |
-
"default": "nousresearch/llama-3-8b-instruct",
|
46 |
"models": {
|
47 |
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
|
48 |
-
"Mistral 7B Instruct v0.
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
|
|
|
|
|
|
|
|
|
|
54 |
}
|
55 |
},
|
56 |
"togetherai": {
|
@@ -60,7 +72,7 @@ MODELS_BY_PROVIDER = {
|
|
60 |
"Llama 3 70B Chat (TogetherAI)": "meta-llama/Llama-3-70b-chat-hf",
|
61 |
"Mixtral 8x7B Instruct (TogetherAI)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
62 |
"Gemma 7B Instruct (TogetherAI)": "google/gemma-7b-it",
|
63 |
-
"
|
64 |
}
|
65 |
},
|
66 |
"google": {
|
@@ -68,335 +80,428 @@ MODELS_BY_PROVIDER = {
|
|
68 |
"models": {
|
69 |
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
|
70 |
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
|
|
|
71 |
}
|
72 |
},
|
73 |
"cohere": {
|
74 |
-
"default": "command-
|
75 |
"models": {
|
76 |
"Command R (Cohere)": "command-r",
|
77 |
"Command R+ (Cohere)": "command-r-plus",
|
78 |
"Command Light (Cohere)": "command-light",
|
79 |
-
"Command (Cohere)": "command",
|
80 |
}
|
81 |
},
|
82 |
-
"huggingface": {
|
83 |
-
"default": "
|
84 |
"models": {
|
85 |
-
"Zephyr 7B Beta (H4/HF Inf.)": "HuggingFaceH4/zephyr-7b-beta",
|
86 |
"Mistral 7B Instruct v0.2 (HF Inf.)": "mistralai/Mistral-7B-Instruct-v0.2",
|
87 |
-
"Llama
|
88 |
-
"
|
89 |
}
|
90 |
},
|
91 |
"openai": {
|
92 |
-
"default": "gpt-
|
93 |
"models": {
|
94 |
"GPT-4o (OpenAI)": "gpt-4o",
|
95 |
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
|
96 |
-
"GPT-4 Turbo (OpenAI)": "gpt-4-turbo",
|
97 |
-
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo",
|
98 |
}
|
99 |
},
|
100 |
-
"xai": {
|
101 |
-
"default": "grok-1",
|
102 |
"models": {
|
103 |
-
"Grok
|
|
|
104 |
}
|
105 |
}
|
106 |
}
|
107 |
|
108 |
-
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str:
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return ui_api_key_override.strip()
|
111 |
|
112 |
-
env_var_name =
|
113 |
if env_var_name:
|
114 |
env_key = os.getenv(env_var_name)
|
115 |
-
if env_key:
|
|
|
116 |
return env_key.strip()
|
117 |
|
118 |
-
if
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
|
122 |
-
logger.warning(f"API Key not found for provider '{
|
123 |
return None
|
124 |
|
125 |
def get_available_providers() -> list[str]:
|
|
|
126 |
return sorted(list(MODELS_BY_PROVIDER.keys()))
|
127 |
|
128 |
-
def
|
|
|
129 |
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
|
130 |
|
131 |
-
def
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
137 |
return display_name
|
|
|
|
|
138 |
if models_dict:
|
139 |
-
|
|
|
|
|
140 |
return None
|
141 |
|
142 |
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
|
|
|
143 |
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
|
144 |
return models.get(display_name)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
provider_lower = provider.lower()
|
148 |
api_key = _get_api_key(provider_lower, api_key_override)
|
149 |
-
|
150 |
base_url = API_URLS.get(provider.upper())
|
151 |
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
|
152 |
|
153 |
if not api_key:
|
154 |
-
env_var_name =
|
155 |
-
yield f"Error: API Key not found for {provider}. Please set it in the UI
|
156 |
return
|
157 |
if not base_url:
|
158 |
yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
|
159 |
return
|
160 |
if not model_id:
|
161 |
-
yield f"Error:
|
162 |
return
|
163 |
|
164 |
headers = {}
|
165 |
payload = {}
|
166 |
request_url = base_url
|
167 |
|
168 |
-
logger.info(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
payload = {
|
174 |
-
"model": model_id,
|
175 |
-
"messages": messages,
|
176 |
-
"stream": True
|
177 |
-
}
|
178 |
-
if provider_lower == "openrouter":
|
179 |
-
headers["HTTP-Referer"] = os.getenv("SPACE_HOST") or "https://github.com/your_username/ai-space-builder"
|
180 |
-
headers["X-Title"] = "AI Space Builder"
|
181 |
|
|
|
182 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
183 |
response.raise_for_status()
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
if
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
"
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
|
|
252 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
253 |
response.raise_for_status()
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
|
267 |
try:
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
request_url = f"{base_url}"
|
311 |
-
|
312 |
-
chat_history_for_cohere = []
|
313 |
-
system_prompt_for_cohere = None
|
314 |
-
current_message_for_cohere = ""
|
315 |
-
|
316 |
-
temp_history = []
|
317 |
-
for msg in messages:
|
318 |
-
if msg["role"] == "system":
|
319 |
-
system_prompt_for_cohere = msg["content"]
|
320 |
-
elif msg["role"] == "user" or msg["role"] == "assistant":
|
321 |
-
temp_history.append(msg)
|
322 |
-
|
323 |
-
if temp_history:
|
324 |
-
current_message_for_cohere = temp_history[-1]["content"]
|
325 |
-
chat_history_for_cohere = [{"role": ("chatbot" if m["role"] == "assistant" else m["role"]), "message": m["content"]} for m in temp_history[:-1]]
|
326 |
-
|
327 |
-
if not current_message_for_cohere:
|
328 |
-
yield "Error: User message not found for Cohere API call."
|
329 |
-
return
|
330 |
-
|
331 |
-
payload = {
|
332 |
-
"model": model_id,
|
333 |
-
"message": current_message_for_cohere,
|
334 |
-
"stream": True,
|
335 |
-
"temperature": 0.7
|
336 |
-
}
|
337 |
-
if chat_history_for_cohere:
|
338 |
-
payload["chat_history"] = chat_history_for_cohere
|
339 |
-
if system_prompt_for_cohere:
|
340 |
-
payload["preamble"] = system_prompt_for_cohere
|
341 |
|
|
|
342 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
343 |
response.raise_for_status()
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
return
|
387 |
-
|
388 |
-
else:
|
389 |
-
yield f"Error: Unsupported provider '{provider}' for streaming chat."
|
390 |
-
return
|
391 |
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
logger.error(f"HTTP error during streaming for {provider}/{model_id}: {e}")
|
396 |
-
yield f"API HTTP Error ({status_code}): {error_text}\nDetails: {e}"
|
397 |
-
except requests.exceptions.RequestException as e:
|
398 |
-
logger.error(f"Request error during streaming for {provider}/{model_id}: {e}")
|
399 |
-
yield f"API Request Error: Could not connect or receive response from {provider} ({e})"
|
400 |
-
except Exception as e:
|
401 |
-
logger.exception(f"Unexpected error during streaming for {provider}/{model_id}:")
|
402 |
-
yield f"An unexpected error occurred: {e}"
|
|
|
1 |
+
# model_handler.py
|
2 |
import os
|
3 |
import requests
|
4 |
import json
|
5 |
import logging
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Load environment variables from .env file
|
9 |
+
load_dotenv()
|
10 |
|
11 |
logging.basicConfig(
|
12 |
level=logging.INFO,
|
|
|
14 |
)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
+
# Maps provider name (uppercase) to environment variable name for API key
|
18 |
+
API_KEYS_ENV_VARS = {
|
19 |
+
"HUGGINGFACE": 'HF_TOKEN', # Note: HF_TOKEN is often used for general HF auth
|
20 |
"GROQ": 'GROQ_API_KEY',
|
21 |
"OPENROUTER": 'OPENROUTER_API_KEY',
|
22 |
"TOGETHERAI": 'TOGETHERAI_API_KEY',
|
23 |
"COHERE": 'COHERE_API_KEY',
|
24 |
"XAI": 'XAI_API_KEY',
|
25 |
"OPENAI": 'OPENAI_API_KEY',
|
26 |
+
"GOOGLE": 'GOOGLE_API_KEY', # Or GOOGLE_GEMINI_API_KEY etc.
|
27 |
}
|
28 |
|
29 |
API_URLS = {
|
|
|
31 |
"GROQ": 'https://api.groq.com/openai/v1/chat/completions',
|
32 |
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
|
33 |
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
|
34 |
+
"COHERE": 'https://api.cohere.ai/v1/chat', # v1 is common for chat, was v2 in ai-learn
|
35 |
"XAI": 'https://api.x.ai/v1/chat/completions',
|
36 |
"OPENAI": 'https://api.openai.com/v1/chat/completions',
|
37 |
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/',
|
38 |
}
|
39 |
|
40 |
+
# Structure: provider_key: { "default": "model_id", "models": {"Display Name": "model_id", ...} }
|
41 |
MODELS_BY_PROVIDER = {
|
42 |
"groq": {
|
43 |
"default": "llama3-8b-8192",
|
|
|
49 |
}
|
50 |
},
|
51 |
"openrouter": {
|
52 |
+
"default": "nousresearch/llama-3-8b-instruct", # Updated default
|
53 |
"models": {
|
54 |
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct",
|
55 |
+
"Mistral 7B Instruct v0.3 (OpenRouter)": "mistralai/mistral-7b-instruct-v0.3", # v0.3 is newer
|
56 |
+
"Mistral 7B Instruct (Free/OpenRouter)": "mistralai/mistral-7b-instruct:free", # Keep free tier if distinct
|
57 |
+
"Gemma 2 9B Instruct (OpenRouter)": "google/gemma-2-9b-it", # Gemma 2
|
58 |
+
"Gemma 7B Instruct (Free/OpenRouter)": "google/gemma-7b-it:free",
|
59 |
+
"Llama 3.1 8B Instruct (OpenRouter)": "meta-llama/llama-3.1-8b-instruct", # Llama 3.1
|
60 |
+
"Llama 3.1 70B Instruct (OpenRouter)": "meta-llama/llama-3.1-70b-instruct",
|
61 |
+
"OpenAI GPT-4o mini (OpenRouter)": "openai/gpt-4o-mini",
|
62 |
+
"OpenAI GPT-4o (OpenRouter)": "openai/gpt-4o",
|
63 |
+
"Claude 3.5 Sonnet (OpenRouter)": "anthropic/claude-3.5-sonnet",
|
64 |
+
"Mixtral 8x7B Instruct v0.1 (OpenRouter)": "mistralai/mixtral-8x7b-instruct", # Older Mixtral
|
65 |
+
"Qwen 2 72B Instruct (OpenRouter)": "qwen/qwen-2-72b-instruct",
|
66 |
}
|
67 |
},
|
68 |
"togetherai": {
|
|
|
72 |
"Llama 3 70B Chat (TogetherAI)": "meta-llama/Llama-3-70b-chat-hf",
|
73 |
"Mixtral 8x7B Instruct (TogetherAI)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
74 |
"Gemma 7B Instruct (TogetherAI)": "google/gemma-7b-it",
|
75 |
+
"Qwen1.5-72B-Chat (TogetherAI)": "qwen/Qwen1.5-72B-Chat",
|
76 |
}
|
77 |
},
|
78 |
"google": {
|
|
|
80 |
"models": {
|
81 |
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest",
|
82 |
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest",
|
83 |
+
# "Gemini 1.0 Pro": "gemini-pro" # Older model example
|
84 |
}
|
85 |
},
|
86 |
"cohere": {
|
87 |
+
"default": "command-r", # command-r is generally better than light
|
88 |
"models": {
|
89 |
"Command R (Cohere)": "command-r",
|
90 |
"Command R+ (Cohere)": "command-r-plus",
|
91 |
"Command Light (Cohere)": "command-light",
|
|
|
92 |
}
|
93 |
},
|
94 |
+
"huggingface": { # Direct HF Inference API is tricky for chat, often better via OpenRouter/TogetherAI
|
95 |
+
"default": "mistralai/Mistral-7B-Instruct-v0.2", # A common TGI compatible model
|
96 |
"models": {
|
|
|
97 |
"Mistral 7B Instruct v0.2 (HF Inf.)": "mistralai/Mistral-7B-Instruct-v0.2",
|
98 |
+
"Llama 3 8B Instruct (HF Inf.)": "meta-llama/Meta-Llama-3-8B-Instruct", # Ensure this specific ID is for TGI
|
99 |
+
# "Zephyr 7B Beta (H4/HF Inf.)": "HuggingFaceH4/zephyr-7b-beta", # Older model
|
100 |
}
|
101 |
},
|
102 |
"openai": {
|
103 |
+
"default": "gpt-4o-mini", # New default
|
104 |
"models": {
|
105 |
"GPT-4o (OpenAI)": "gpt-4o",
|
106 |
"GPT-4o mini (OpenAI)": "gpt-4o-mini",
|
107 |
+
"GPT-4 Turbo (OpenAI)": "gpt-4-turbo", # Refers to latest gpt-4-turbo variant
|
108 |
+
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo", # Refers to latest gpt-3.5-turbo variant
|
109 |
}
|
110 |
},
|
111 |
+
"xai": { # Assuming xAI might expand model list
|
112 |
+
"default": "grok-1.5-flash", # Assuming Grok 1.5 flash is available
|
113 |
"models": {
|
114 |
+
"Grok 1.5 Flash (xAI)": "grok-1.5-flash",
|
115 |
+
# "Grok-1 (xAI)": "grok-1", # Older model
|
116 |
}
|
117 |
}
|
118 |
}
|
119 |
|
120 |
+
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str | None:
|
121 |
+
"""
|
122 |
+
Retrieves API key for a given provider.
|
123 |
+
Priority: UI Override > Environment Variable from API_KEYS_ENV_VARS > Specific (e.g. HF_TOKEN for HuggingFace).
|
124 |
+
"""
|
125 |
+
provider_upper = provider.upper()
|
126 |
+
if ui_api_key_override and ui_api_key_override.strip():
|
127 |
+
logger.debug(f"Using UI-provided API key for {provider_upper}.")
|
128 |
return ui_api_key_override.strip()
|
129 |
|
130 |
+
env_var_name = API_KEYS_ENV_VARS.get(provider_upper)
|
131 |
if env_var_name:
|
132 |
env_key = os.getenv(env_var_name)
|
133 |
+
if env_key and env_key.strip():
|
134 |
+
logger.debug(f"Using API key from env var '{env_var_name}' for {provider_upper}.")
|
135 |
return env_key.strip()
|
136 |
|
137 |
+
# Specific fallback for HuggingFace if HF_TOKEN is set and API_KEYS_ENV_VARS['HUGGINGFACE'] wasn't specific enough
|
138 |
+
if provider_upper == 'HUGGINGFACE':
|
139 |
+
hf_token_fallback = os.getenv("HF_TOKEN")
|
140 |
+
if hf_token_fallback and hf_token_fallback.strip():
|
141 |
+
logger.debug("Using HF_TOKEN as fallback for HuggingFace provider.")
|
142 |
+
return hf_token_fallback.strip()
|
143 |
|
144 |
+
logger.warning(f"API Key not found for provider '{provider_upper}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.")
|
145 |
return None
|
146 |
|
147 |
def get_available_providers() -> list[str]:
|
148 |
+
"""Returns a sorted list of available provider names (e.g., 'groq', 'openai')."""
|
149 |
return sorted(list(MODELS_BY_PROVIDER.keys()))
|
150 |
|
151 |
+
def get_model_display_names_for_provider(provider: str) -> list[str]:
|
152 |
+
"""Returns a sorted list of model display names for a given provider."""
|
153 |
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
|
154 |
|
155 |
+
def get_default_model_display_name_for_provider(provider: str) -> str | None:
|
156 |
+
"""Gets the default model's display name for a provider."""
|
157 |
+
provider_data = MODELS_BY_PROVIDER.get(provider.lower(), {})
|
158 |
+
models_dict = provider_data.get("models", {})
|
159 |
+
default_model_id = provider_data.get("default")
|
160 |
+
|
161 |
+
if default_model_id and models_dict:
|
162 |
+
for display_name, model_id_val in models_dict.items():
|
163 |
+
if model_id_val == default_model_id:
|
164 |
return display_name
|
165 |
+
|
166 |
+
# Fallback to the first model in the sorted list if default not found or not set
|
167 |
if models_dict:
|
168 |
+
sorted_display_names = sorted(list(models_dict.keys()))
|
169 |
+
if sorted_display_names:
|
170 |
+
return sorted_display_names[0]
|
171 |
return None
|
172 |
|
173 |
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
|
174 |
+
"""Gets the actual model ID from its display name for a given provider."""
|
175 |
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
|
176 |
return models.get(display_name)
|
177 |
|
178 |
+
|
179 |
+
def call_model_stream(provider: str, model_display_name: str, messages: list[dict], api_key_override: str = None, temperature: float = 0.7, max_tokens: int = None) -> iter:
|
180 |
+
"""
|
181 |
+
Calls the specified model via its provider and streams the response.
|
182 |
+
Handles provider-specific request formatting and error handling.
|
183 |
+
Yields chunks of the response text or an error string.
|
184 |
+
"""
|
185 |
provider_lower = provider.lower()
|
186 |
api_key = _get_api_key(provider_lower, api_key_override)
|
|
|
187 |
base_url = API_URLS.get(provider.upper())
|
188 |
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
|
189 |
|
190 |
if not api_key:
|
191 |
+
env_var_name = API_KEYS_ENV_VARS.get(provider.upper(), 'N/A')
|
192 |
+
yield f"Error: API Key not found for {provider}. Please set it in the UI or env var '{env_var_name}'."
|
193 |
return
|
194 |
if not base_url:
|
195 |
yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
|
196 |
return
|
197 |
if not model_id:
|
198 |
+
yield f"Error: Model ID not found for '{model_display_name}' under provider '{provider}'. Check configuration."
|
199 |
return
|
200 |
|
201 |
headers = {}
|
202 |
payload = {}
|
203 |
request_url = base_url
|
204 |
|
205 |
+
logger.info(f"Streaming from {provider}/{model_display_name} (ID: {model_id})...")
|
206 |
+
|
207 |
+
# --- Standard OpenAI-compatible providers ---
|
208 |
+
if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]:
|
209 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
210 |
+
payload = {"model": model_id, "messages": messages, "stream": True, "temperature": temperature}
|
211 |
+
if max_tokens: payload["max_tokens"] = max_tokens
|
212 |
|
213 |
+
if provider_lower == "openrouter":
|
214 |
+
headers["HTTP-Referer"] = os.getenv("OPENROUTER_REFERRER") or "http://localhost/gradio" # Example Referer
|
215 |
+
headers["X-Title"] = os.getenv("OPENROUTER_X_TITLE") or "Gradio AI Researcher" # Example Title
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
try:
|
218 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
219 |
response.raise_for_status()
|
220 |
|
221 |
+
# More robust SSE parsing
|
222 |
+
buffer = ""
|
223 |
+
for chunk in response.iter_content(chunk_size=None): # Process raw bytes
|
224 |
+
buffer += chunk.decode('utf-8', errors='replace')
|
225 |
+
while '\n\n' in buffer:
|
226 |
+
event_str, buffer = buffer.split('\n\n', 1)
|
227 |
+
if not event_str.strip(): continue
|
228 |
+
|
229 |
+
content_chunk = ""
|
230 |
+
for line in event_str.splitlines():
|
231 |
+
if line.startswith('data: '):
|
232 |
+
data_json = line[len('data: '):].strip()
|
233 |
+
if data_json == '[DONE]':
|
234 |
+
return # Stream finished
|
235 |
+
try:
|
236 |
+
data = json.loads(data_json)
|
237 |
+
if data.get("choices") and len(data["choices"]) > 0:
|
238 |
+
delta = data["choices"][0].get("delta", {})
|
239 |
+
if delta and delta.get("content"):
|
240 |
+
content_chunk += delta["content"]
|
241 |
+
except json.JSONDecodeError:
|
242 |
+
logger.warning(f"Failed to decode JSON from stream line: {data_json}")
|
243 |
+
if content_chunk:
|
244 |
+
yield content_chunk
|
245 |
+
# Process any remaining buffer content (less common with '\n\n' delimiter)
|
246 |
+
if buffer.strip():
|
247 |
+
logger.debug(f"Remaining buffer after OpenAI-like stream: {buffer}")
|
248 |
+
|
249 |
+
|
250 |
+
except requests.exceptions.HTTPError as e:
|
251 |
+
err_msg = f"API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
|
252 |
+
logger.error(f"{err_msg} for {provider}/{model_id}", exc_info=False)
|
253 |
+
yield f"Error: {err_msg}"
|
254 |
+
except requests.exceptions.RequestException as e:
|
255 |
+
logger.error(f"API Request Error for {provider}/{model_id}: {e}", exc_info=False)
|
256 |
+
yield f"Error: Could not connect to {provider} ({e})"
|
257 |
+
except Exception as e:
|
258 |
+
logger.exception(f"Unexpected error during {provider} stream:")
|
259 |
+
yield f"Error: An unexpected error occurred: {e}"
|
260 |
+
return
|
261 |
+
|
262 |
+
# --- Google Gemini ---
|
263 |
+
elif provider_lower == "google":
|
264 |
+
system_instruction = None
|
265 |
+
filtered_messages = []
|
266 |
+
for msg in messages:
|
267 |
+
if msg["role"] == "system": system_instruction = {"parts": [{"text": msg["content"]}]}
|
268 |
+
else:
|
269 |
+
role = "model" if msg["role"] == "assistant" else msg["role"]
|
270 |
+
filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]})
|
271 |
+
|
272 |
+
payload = {
|
273 |
+
"contents": filtered_messages,
|
274 |
+
"safetySettings": [ # Example: more permissive settings
|
275 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
276 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
277 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
278 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
279 |
+
],
|
280 |
+
"generationConfig": {"temperature": temperature}
|
281 |
+
}
|
282 |
+
if max_tokens: payload["generationConfig"]["maxOutputTokens"] = max_tokens
|
283 |
+
if system_instruction: payload["system_instruction"] = system_instruction
|
284 |
+
|
285 |
+
request_url = f"{base_url}{model_id}:streamGenerateContent?key={api_key}" # API key in query param
|
286 |
+
headers = {"Content-Type": "application/json"}
|
287 |
|
288 |
+
try:
|
289 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
290 |
response.raise_for_status()
|
291 |
+
|
292 |
+
# Google's stream is a bit different, often newline-delimited JSON arrays/objects
|
293 |
+
buffer = ""
|
294 |
+
for chunk in response.iter_content(chunk_size=None):
|
295 |
+
buffer += chunk.decode('utf-8', errors='replace')
|
296 |
+
# Google might send chunks that are not complete JSON objects, or multiple objects
|
297 |
+
# A common pattern is [ {obj1} , {obj2} ] where chunks split mid-array or mid-object.
|
298 |
+
# This parsing needs to be robust. A simple split by '\n' might not always work if JSON is pretty-printed.
|
299 |
+
# The previous code's `json.loads(f"[{decoded_line}]")` was an attempt to handle this.
|
300 |
+
# For now, let's assume newline delimited for simplicity, but this is a known tricky part.
|
301 |
+
|
302 |
+
while '\n' in buffer:
|
303 |
+
line, buffer = buffer.split('\n', 1)
|
304 |
+
line = line.strip()
|
305 |
+
if not line: continue
|
306 |
+
if line.startswith(','): line = line[1:] # Handle leading commas if splitting an array
|
307 |
|
308 |
try:
|
309 |
+
# Remove "data: " prefix if present (less common for Gemini direct API but good practice)
|
310 |
+
if line.startswith('data: '): line = line[len('data: '):]
|
311 |
+
|
312 |
+
# Gemini often streams an array of objects, or just one object.
|
313 |
+
# Try to parse as a single object first. If fails, try as array.
|
314 |
+
parsed_data = None
|
315 |
+
try:
|
316 |
+
parsed_data = json.loads(line)
|
317 |
+
except json.JSONDecodeError:
|
318 |
+
# If it's part of an array, it might be missing brackets.
|
319 |
+
# This heuristic is fragile. A proper SSE parser or stateful JSON parser is better.
|
320 |
+
if line.startswith('{') and line.endswith('}'): # Looks like a complete object
|
321 |
+
pass # already tried json.loads
|
322 |
+
# Try to wrap with [] if it seems like a list content without brackets
|
323 |
+
elif line.startswith('{') or line.endswith('}'):
|
324 |
+
try:
|
325 |
+
temp_parsed_list = json.loads(f"[{line}]")
|
326 |
+
if temp_parsed_list and isinstance(temp_parsed_list, list):
|
327 |
+
parsed_data = temp_parsed_list[0] # take first if it becomes a list
|
328 |
+
except json.JSONDecodeError:
|
329 |
+
logger.warning(f"Google: Still can't parse line even with array wrap: {line}")
|
330 |
+
|
331 |
+
if parsed_data:
|
332 |
+
data_to_process = [parsed_data] if isinstance(parsed_data, dict) else parsed_data # Ensure list
|
333 |
+
for event_data in data_to_process:
|
334 |
+
if not isinstance(event_data, dict): continue
|
335 |
+
if event_data.get("candidates"):
|
336 |
+
for candidate in event_data["candidates"]:
|
337 |
+
if candidate.get("content", {}).get("parts"):
|
338 |
+
for part in candidate["content"]["parts"]:
|
339 |
+
if part.get("text"):
|
340 |
+
yield part["text"]
|
341 |
+
except json.JSONDecodeError:
|
342 |
+
logger.warning(f"Google: JSONDecodeError for line: {line}")
|
343 |
+
except Exception as e_google_proc:
|
344 |
+
logger.error(f"Google: Error processing stream data: {e_google_proc}, Line: {line}")
|
345 |
+
|
346 |
+
except requests.exceptions.HTTPError as e:
|
347 |
+
err_msg = f"Google API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
|
348 |
+
logger.error(err_msg, exc_info=False)
|
349 |
+
yield f"Error: {err_msg}"
|
350 |
+
except Exception as e:
|
351 |
+
logger.exception(f"Unexpected error during Google stream:")
|
352 |
+
yield f"Error: An unexpected error occurred with Google API: {e}"
|
353 |
+
return
|
354 |
|
355 |
+
# --- Cohere ---
|
356 |
+
elif provider_lower == "cohere":
|
357 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
|
358 |
+
|
359 |
+
# Cohere message format
|
360 |
+
chat_history_cohere = []
|
361 |
+
preamble_cohere = None
|
362 |
+
user_message_cohere = ""
|
363 |
+
|
364 |
+
temp_messages = list(messages) # Work with a copy
|
365 |
+
if temp_messages and temp_messages[0]["role"] == "system":
|
366 |
+
preamble_cohere = temp_messages.pop(0)["content"]
|
367 |
+
|
368 |
+
if temp_messages:
|
369 |
+
user_message_cohere = temp_messages.pop()["content"] # Last message is the current user query
|
370 |
+
for msg in temp_messages: # Remaining are history
|
371 |
+
role = "USER" if msg["role"] == "user" else "CHATBOT"
|
372 |
+
chat_history_cohere.append({"role": role, "message": msg["content"]})
|
373 |
+
|
374 |
+
if not user_message_cohere:
|
375 |
+
yield "Error: User message is empty for Cohere."
|
376 |
+
return
|
377 |
|
378 |
+
payload = {
|
379 |
+
"model": model_id,
|
380 |
+
"message": user_message_cohere,
|
381 |
+
"stream": True,
|
382 |
+
"temperature": temperature
|
383 |
+
}
|
384 |
+
if max_tokens: payload["max_tokens"] = max_tokens # Cohere uses max_tokens
|
385 |
+
if chat_history_cohere: payload["chat_history"] = chat_history_cohere
|
386 |
+
if preamble_cohere: payload["preamble"] = preamble_cohere
|
387 |
+
|
388 |
+
try:
|
389 |
+
response = requests.post(base_url, headers=headers, json=payload, stream=True, timeout=180)
|
390 |
+
response.raise_for_status()
|
391 |
+
|
392 |
+
# Cohere SSE format is event: type\ndata: {json}\n\n
|
393 |
+
buffer = ""
|
394 |
+
for chunk_bytes in response.iter_content(chunk_size=None):
|
395 |
+
buffer += chunk_bytes.decode('utf-8', errors='replace')
|
396 |
+
while '\n\n' in buffer:
|
397 |
+
event_str, buffer = buffer.split('\n\n', 1)
|
398 |
+
if not event_str.strip(): continue
|
399 |
+
|
400 |
+
event_type = None
|
401 |
+
data_json_str = None
|
402 |
+
for line in event_str.splitlines():
|
403 |
+
if line.startswith("event:"): event_type = line[len("event:"):].strip()
|
404 |
+
elif line.startswith("data:"): data_json_str = line[len("data:"):].strip()
|
405 |
+
|
406 |
+
if data_json_str:
|
407 |
+
try:
|
408 |
+
data = json.loads(data_json_str)
|
409 |
+
if event_type == "text-generation" and "text" in data:
|
410 |
+
yield data["text"]
|
411 |
+
elif event_type == "stream-end":
|
412 |
+
logger.debug(f"Cohere stream ended. Finish reason: {data.get('finish_reason')}")
|
413 |
+
return
|
414 |
+
except json.JSONDecodeError:
|
415 |
+
logger.warning(f"Cohere: Failed to decode JSON: {data_json_str}")
|
416 |
+
if buffer.strip():
|
417 |
+
logger.debug(f"Cohere: Remaining buffer: {buffer.strip()}")
|
418 |
+
|
419 |
+
|
420 |
+
except requests.exceptions.HTTPError as e:
|
421 |
+
err_msg = f"Cohere API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
|
422 |
+
logger.error(err_msg, exc_info=False)
|
423 |
+
yield f"Error: {err_msg}"
|
424 |
+
except Exception as e:
|
425 |
+
logger.exception(f"Unexpected error during Cohere stream:")
|
426 |
+
yield f"Error: An unexpected error occurred with Cohere API: {e}"
|
427 |
+
return
|
428 |
|
429 |
+
# --- HuggingFace Inference API (Basic TGI support) ---
|
430 |
+
# This is very basic and might not work for all models or complex scenarios.
|
431 |
+
# Assumes model is deployed with Text Generation Inference (TGI) and supports streaming.
|
432 |
+
elif provider_lower == "huggingface":
|
433 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
434 |
+
# Construct prompt string for TGI (often needs specific formatting)
|
435 |
+
# This is a generic attempt, specific models might need <|user|>, <|assistant|> etc.
|
436 |
+
prompt_parts = []
|
437 |
+
for msg in messages:
|
438 |
+
role_prefix = ""
|
439 |
+
if msg['role'] == 'system': role_prefix = "System: " # Or might be ignored/handled differently
|
440 |
+
elif msg['role'] == 'user': role_prefix = "User: "
|
441 |
+
elif msg['role'] == 'assistant': role_prefix = "Assistant: "
|
442 |
+
prompt_parts.append(f"{role_prefix}{msg['content']}")
|
443 |
+
|
444 |
+
# TGI typically expects a final "Assistant: " to start generating from
|
445 |
+
tgi_prompt = "\n".join(prompt_parts) + "\nAssistant: "
|
446 |
+
|
447 |
+
payload = {
|
448 |
+
"inputs": tgi_prompt,
|
449 |
+
"parameters": {
|
450 |
+
"temperature": temperature if temperature > 0 else 0.01, # TGI needs temp > 0 for sampling
|
451 |
+
"max_new_tokens": max_tokens or 1024, # Default TGI max_new_tokens
|
452 |
+
"return_full_text": False, # We only want generated part
|
453 |
+
"do_sample": True if temperature > 0 else False,
|
454 |
+
},
|
455 |
+
"stream": True
|
456 |
+
}
|
457 |
+
request_url = f"{base_url}{model_id}" # Model ID is part of URL path for HF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
|
459 |
+
try:
|
460 |
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
|
461 |
response.raise_for_status()
|
462 |
|
463 |
+
# TGI SSE stream: data: {"token": {"id": ..., "text": "...", "logprob": ..., "special": ...}}
|
464 |
+
# Or sometimes just data: "text_chunk" for simpler models/configs
|
465 |
+
buffer = ""
|
466 |
+
for chunk_bytes in response.iter_content(chunk_size=None):
|
467 |
+
buffer += chunk_bytes.decode('utf-8', errors='replace')
|
468 |
+
while '\n' in buffer: # TGI often uses single newline
|
469 |
+
line, buffer = buffer.split('\n', 1)
|
470 |
+
line = line.strip()
|
471 |
+
if not line: continue
|
472 |
+
|
473 |
+
if line.startswith('data:'):
|
474 |
+
data_json_str = line[len('data:'):].strip()
|
475 |
+
try:
|
476 |
+
data = json.loads(data_json_str)
|
477 |
+
if "token" in data and "text" in data["token"]:
|
478 |
+
yield data["token"]["text"]
|
479 |
+
elif "generated_text" in data and data.get("details") is None: # Sometimes a final non-streaming like object might appear
|
480 |
+
# This case is tricky, if it's the *only* thing then it's not really streaming
|
481 |
+
pass # For now, ignore if it's not a token object
|
482 |
+
# Some TGI might send raw text if not fully SSE compliant for stream
|
483 |
+
# elif isinstance(data, str): yield data
|
484 |
+
|
485 |
+
except json.JSONDecodeError:
|
486 |
+
# If it's not JSON, it might be a raw string (less common for TGI stream=True)
|
487 |
+
# For safety, only yield if it's a clear text string
|
488 |
+
if not data_json_str.startswith('{') and not data_json_str.startswith('['):
|
489 |
+
yield data_json_str
|
490 |
+
else:
|
491 |
+
logger.warning(f"HF: Failed to decode JSON and not raw string: {data_json_str}")
|
492 |
+
if buffer.strip():
|
493 |
+
logger.debug(f"HF: Remaining buffer: {buffer.strip()}")
|
494 |
+
|
495 |
+
|
496 |
+
except requests.exceptions.HTTPError as e:
|
497 |
+
err_msg = f"HF API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
|
498 |
+
logger.error(err_msg, exc_info=False)
|
499 |
+
yield f"Error: {err_msg}"
|
500 |
+
except Exception as e:
|
501 |
+
logger.exception(f"Unexpected error during HF stream:")
|
502 |
+
yield f"Error: An unexpected error occurred with HF API: {e}"
|
503 |
+
return
|
|
|
|
|
|
|
|
|
|
|
504 |
|
505 |
+
else:
|
506 |
+
yield f"Error: Provider '{provider}' is not configured for streaming in this handler."
|
507 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|