broadfield-dev commited on
Commit
13f9441
·
verified ·
1 Parent(s): ae3c8d7

Update memory_logic.py

Browse files
Files changed (1) hide show
  1. memory_logic.py +152 -212
memory_logic.py CHANGED
@@ -61,7 +61,7 @@ def _get_sqlite_connection():
61
  db_dir = os.path.dirname(SQLITE_DB_PATH)
62
  if db_dir and not os.path.exists(db_dir):
63
  os.makedirs(db_dir, exist_ok=True)
64
- return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
65
 
66
  def _init_sqlite_tables():
67
  if STORAGE_BACKEND != "SQLITE" or not sqlite3:
@@ -88,21 +88,48 @@ def _init_sqlite_tables():
88
  except Exception as e:
89
  logger.error(f"SQLite table initialization error: {e}", exc_info=True)
90
 
91
- # --- Initialization and State Management ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  def initialize_memory_system():
93
  global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
94
 
95
  with _init_lock:
96
  if _initialized:
97
- logger.info("Memory system already initialized.")
98
  return
99
 
100
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
101
  init_start_time = time.time()
102
 
103
  if not SentenceTransformer or not faiss or not np:
104
- logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
105
- _initialized = False
106
  return
107
 
108
  if not _embedder:
@@ -110,246 +137,185 @@ def initialize_memory_system():
110
  logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
111
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
112
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
113
- logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
114
  except Exception as e:
115
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
116
- _initialized = False
117
  return
118
 
119
- if STORAGE_BACKEND == "SQLITE":
120
- _init_sqlite_tables()
121
 
122
- # Load Memories
123
- logger.info("Loading memories from persistent storage...")
124
  temp_memories_json = []
125
- if STORAGE_BACKEND == "RAM":
126
- pass
127
- elif STORAGE_BACKEND == "SQLITE" and sqlite3:
128
- try:
129
- with _get_sqlite_connection() as conn:
130
- temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
131
  except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
132
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
133
  try:
134
- logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
135
  dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
136
  if "train" in dataset and "memory_json" in dataset["train"].column_names:
137
- num_rows = len(dataset["train"])
138
- logger.info(f"HF Dataset for memories found. 'train' split has {num_rows} rows.")
139
- temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str) and m_json.strip()]
140
- logger.info(f"Extracted {len(temp_memories_json)} valid memory JSON strings from the dataset.")
141
- else:
142
- logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} loaded, but 'train' split or 'memory_json' column is missing. Dataset structure: {dataset}")
143
- except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}", exc_info=True)
144
 
145
  _memory_items_list = temp_memories_json
146
- logger.info(f"Loaded {len(_memory_items_list)} memory items into cache from {STORAGE_BACKEND}.")
147
-
148
- _faiss_memory_index = faiss.IndexFlatL2(_dimension)
149
- if _memory_items_list:
150
- logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
151
- texts_to_embed_mem = []
152
- for mem_json_str in _memory_items_list:
153
- try:
154
- mem_obj = json.loads(mem_json_str)
155
- text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
156
- texts_to_embed_mem.append(text)
157
- except json.JSONDecodeError: logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
158
-
159
- if texts_to_embed_mem:
160
- try:
161
- embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
162
- embeddings_np = np.array(embeddings, dtype=np.float32)
163
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
164
- _faiss_memory_index.add(embeddings_np)
165
- else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
166
- except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
167
- logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
168
-
169
- # Load Rules
170
- logger.info("Loading rules from persistent storage...")
171
  temp_rules_text = []
172
- if STORAGE_BACKEND == "RAM":
173
- pass
174
- elif STORAGE_BACKEND == "SQLITE" and sqlite3:
175
- try:
176
- with _get_sqlite_connection() as conn:
177
- temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
178
  except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
179
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
180
  try:
181
- logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
182
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
183
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
184
- num_rows = len(dataset["train"])
185
- logger.info(f"HF Dataset for rules found. 'train' split has {num_rows} rows.")
186
- temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
187
- logger.info(f"Extracted {len(temp_rules_text)} valid rule strings from the dataset.")
188
- else:
189
- logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules loaded, but 'train' split or 'rule_text' column is missing. Dataset structure: {dataset}")
190
- except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}", exc_info=True)
191
-
192
  _rules_items_list = sorted(list(set(temp_rules_text)))
193
- logger.info(f"Loaded {len(_rules_items_list)} rule items into cache from {STORAGE_BACKEND}.")
194
-
195
- _faiss_rules_index = faiss.IndexFlatL2(_dimension)
196
- if _rules_items_list:
197
- logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
198
- if _rules_items_list:
199
- try:
200
- embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
201
- embeddings_np = np.array(embeddings, dtype=np.float32)
202
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
203
- _faiss_rules_index.add(embeddings_np)
204
- else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
205
- except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
206
- logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
207
 
208
  _initialized = True
209
  logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
210
 
211
- def _ensure_initialized(item_list, storage_type):
212
- """Internal helper to check for initialization and trigger a reload if cache is empty on a persistent backend."""
213
- global _initialized
214
- if not _initialized or (storage_type != "RAM" and not item_list):
215
- if not _initialized:
216
- logger.warning("Memory system not initialized. Forcing initialization.")
217
- else:
218
- logger.warning(f"Persistent backend ({storage_type}) is configured, but cache is empty. Forcing re-initialization to reload data.")
219
-
220
- with _init_lock:
221
- _initialized = False
222
- initialize_memory_system()
223
 
224
  # --- Memory Operations (Semantic) ---
225
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
226
  global _memory_items_list, _faiss_memory_index
227
- _ensure_initialized(_memory_items_list, STORAGE_BACKEND)
228
  if not _embedder or not _faiss_memory_index:
229
- return False, "Memory system or embedder not initialized for adding memory."
 
230
  memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
231
  memory_json_str = json.dumps(memory_obj)
232
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
 
233
  try:
234
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
235
- embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
236
- if embedding_np.shape != (1, _dimension):
237
- logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
238
- return False, "Embedding shape error."
239
  _faiss_memory_index.add(embedding_np)
240
  _memory_items_list.append(memory_json_str)
241
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
242
  with _get_sqlite_connection() as conn:
243
- conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
244
- conn.commit()
245
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
246
- logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
247
  Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
248
- logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
 
249
  return True, "Memory added successfully."
250
  except Exception as e:
251
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
252
  return False, f"Error adding memory: {e}"
253
 
254
  def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
255
- _ensure_initialized(_memory_items_list, STORAGE_BACKEND)
256
- if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
257
- logger.warning("Cannot retrieve memories: Embedder/FAISS index not ready or empty after initialization attempt.")
 
 
 
 
 
 
 
 
258
  return []
 
259
  try:
260
  query_embedding = _embedder.encode([query], convert_to_tensor=False)
261
- query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
262
- if query_embedding_np.shape[1] != _dimension:
263
- logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
264
- return []
265
  distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
266
- results = []
267
- for i in indices[0]:
268
- if 0 <= i < len(_memory_items_list):
269
- try: results.append(json.loads(_memory_items_list[i]))
270
- except json.JSONDecodeError: logger.warning(f"Could not parse memory JSON from list at index {i}")
271
- else: logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
272
- logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
273
  return results
274
  except Exception as e:
275
  logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
276
  return []
277
 
 
278
  # --- Rule (Insight) Operations (Semantic) ---
279
  def add_rule_entry(rule_text: str) -> tuple[bool, str]:
280
  global _rules_items_list, _faiss_rules_index
281
- _ensure_initialized(_rules_items_list, STORAGE_BACKEND)
282
- if not _embedder or not _faiss_rules_index: return False, "Rule system or embedder not initialized."
283
  rule_text = rule_text.strip()
284
- if not rule_text: return False, "Rule text cannot be empty."
285
- if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
 
286
  return False, "Invalid rule format."
287
- if rule_text in _rules_items_list: return False, "duplicate"
288
  try:
289
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
290
- embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
291
- if embedding_np.shape != (1, _dimension): return False, "Rule embedding shape error."
292
  _faiss_rules_index.add(embedding_np)
293
  _rules_items_list.append(rule_text)
294
  _rules_items_list.sort()
295
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
296
  with _get_sqlite_connection() as conn:
297
- conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
298
- conn.commit()
299
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
300
- logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
301
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
302
- logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
303
  return True, "Rule added successfully."
304
  except Exception as e:
305
  logger.error(f"Error adding rule entry: {e}", exc_info=True)
306
  return False, f"Error adding rule: {e}"
307
 
308
  def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
309
- _ensure_initialized(_rules_items_list, STORAGE_BACKEND)
310
- if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
311
- logger.warning("Cannot retrieve rules: Embedder/FAISS index not ready or empty after initialization attempt.")
312
- return []
 
 
313
  try:
314
  query_embedding = _embedder.encode([query], convert_to_tensor=False)
315
- query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
316
- if query_embedding_np.shape[1] != _dimension: return []
317
  distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
318
- results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
319
- logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
320
- return results
321
  except Exception as e:
322
  logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
323
  return []
324
 
325
  def remove_rule_entry(rule_text_to_delete: str) -> bool:
326
  global _rules_items_list, _faiss_rules_index
327
- _ensure_initialized(_rules_items_list, STORAGE_BACKEND)
328
- if not _embedder or not _faiss_rules_index: return False
329
  rule_text_to_delete = rule_text_to_delete.strip()
330
  if rule_text_to_delete not in _rules_items_list: return False
331
  try:
332
  _rules_items_list.remove(rule_text_to_delete)
333
- _rules_items_list.sort()
334
- new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
335
- if _rules_items_list:
336
- embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
337
- embeddings_np = np.array(embeddings, dtype=np.float32)
338
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
339
- new_faiss_rules_index.add(embeddings_np)
340
- else:
341
- logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
342
- _rules_items_list.append(rule_text_to_delete)
343
- _rules_items_list.sort()
344
- return False
345
- _faiss_rules_index = new_faiss_rules_index
346
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
347
  with _get_sqlite_connection() as conn:
348
- conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
349
- conn.commit()
350
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
351
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
352
- logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
353
  return True
354
  except Exception as e:
355
  logger.error(f"Error removing rule entry: {e}", exc_info=True)
@@ -357,50 +323,42 @@ def remove_rule_entry(rule_text_to_delete: str) -> bool:
357
 
358
  # --- Utility functions to get all data (for UI display, etc.) ---
359
  def get_all_rules_cached() -> list[str]:
360
- _ensure_initialized(_rules_items_list, STORAGE_BACKEND)
361
  return list(_rules_items_list)
362
 
363
  def get_all_memories_cached() -> list[dict]:
364
- _ensure_initialized(_memory_items_list, STORAGE_BACKEND)
365
- mem_dicts = []
366
- for mem_json_str in _memory_items_list:
367
- try: mem_dicts.append(json.loads(mem_json_str))
368
- except: pass
369
- return mem_dicts
370
 
371
  def clear_all_memory_data_backend() -> bool:
372
  global _memory_items_list, _faiss_memory_index
373
- _ensure_initialized(_memory_items_list, STORAGE_BACKEND)
374
- success = True
 
375
  try:
376
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
377
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
378
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
379
  Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
380
- _memory_items_list = []
381
- if _faiss_memory_index: _faiss_memory_index.reset()
382
- logger.info("All memories cleared from backend and in-memory stores.")
383
  except Exception as e:
384
- logger.error(f"Error clearing all memory data: {e}")
385
- success = False
386
- return success
387
 
388
  def clear_all_rules_data_backend() -> bool:
389
  global _rules_items_list, _faiss_rules_index
390
- _ensure_initialized(_rules_items_list, STORAGE_BACKEND)
391
- success = True
 
392
  try:
393
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
394
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
395
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
396
  Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
397
- _rules_items_list = []
398
- if _faiss_rules_index: _faiss_rules_index.reset()
399
- logger.info("All rules cleared from backend and in-memory stores.")
400
  except Exception as e:
401
- logger.error(f"Error clearing all rules data: {e}")
402
- success = False
403
- return success
404
 
405
  FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
406
  FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
@@ -410,32 +368,14 @@ def save_faiss_indices_to_disk():
410
  faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
411
  if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
412
  if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
413
- try:
414
- faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
415
- logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
416
- except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
417
  if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
418
- try:
419
- faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
420
- logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
421
- except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
422
 
423
  def load_faiss_indices_from_disk():
424
  global _faiss_memory_index, _faiss_rules_index
425
  if not _initialized or not faiss: return
426
- if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index:
427
- try:
428
- logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
429
- _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
430
- logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
431
- if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
432
- logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
433
- except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
434
- if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
435
- try:
436
- logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
437
- _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
438
- logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
439
- if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
440
- logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
441
- except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
 
61
  db_dir = os.path.dirname(SQLITE_DB_PATH)
62
  if db_dir and not os.path.exists(db_dir):
63
  os.makedirs(db_dir, exist_ok=True)
64
+ return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
65
 
66
  def _init_sqlite_tables():
67
  if STORAGE_BACKEND != "SQLITE" or not sqlite3:
 
88
  except Exception as e:
89
  logger.error(f"SQLite table initialization error: {e}", exc_info=True)
90
 
91
+
92
+ def _build_faiss_index(items_list, text_extraction_fn):
93
+ """Builds a FAISS index from a list of items."""
94
+ if not _embedder:
95
+ logger.error("Cannot build FAISS index: Embedder not available.")
96
+ return None
97
+
98
+ index = faiss.IndexFlatL2(_dimension)
99
+ if not items_list:
100
+ return index
101
+
102
+ logger.info(f"Building FAISS index for {len(items_list)} items...")
103
+ texts_to_embed = [text_extraction_fn(item) for item in items_list]
104
+
105
+ try:
106
+ embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
107
+ embeddings_np = np.array(embeddings, dtype=np.float32)
108
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(items_list):
109
+ index.add(embeddings_np)
110
+ logger.info(f"FAISS index built successfully with {index.ntotal} items.")
111
+ else:
112
+ logger.error(f"FAISS build failed: Embeddings shape error. Expected ({len(items_list)}, {_dimension}), Got {getattr(embeddings_np, 'shape', 'N/A')}")
113
+ return faiss.IndexFlatL2(_dimension) # Return empty index on failure
114
+ except Exception as e:
115
+ logger.error(f"Error building FAISS index: {e}", exc_info=True)
116
+ return faiss.IndexFlatL2(_dimension) # Return empty index on failure
117
+
118
+ return index
119
+
120
+ # --- Initialization ---
121
  def initialize_memory_system():
122
  global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
123
 
124
  with _init_lock:
125
  if _initialized:
 
126
  return
127
 
128
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
129
  init_start_time = time.time()
130
 
131
  if not SentenceTransformer or not faiss or not np:
132
+ logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
 
133
  return
134
 
135
  if not _embedder:
 
137
  logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
138
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
139
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
 
140
  except Exception as e:
141
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
 
142
  return
143
 
144
+ if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()
 
145
 
146
+ # Load Memories from persistent storage
 
147
  temp_memories_json = []
148
+ if STORAGE_BACKEND == "SQLITE":
149
+ try: temp_memories_json = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
 
 
 
 
150
  except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
151
+ elif STORAGE_BACKEND == "HF_DATASET":
152
  try:
153
+ logger.info(f"Loading memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
154
  dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
155
  if "train" in dataset and "memory_json" in dataset["train"].column_names:
156
+ temp_memories_json = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
157
+ logger.info(f"Loaded {len(temp_memories_json)} valid memories from HF Dataset.")
158
+ else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} has no 'train' split or 'memory_json' column.")
159
+ except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
 
 
 
160
 
161
  _memory_items_list = temp_memories_json
162
+
163
+ # Build Memory FAISS Index
164
+ _faiss_memory_index = _build_faiss_index(
165
+ _memory_items_list,
166
+ lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
167
+ )
168
+
169
+ # Load Rules from persistent storage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  temp_rules_text = []
171
+ if STORAGE_BACKEND == "SQLITE":
172
+ try: temp_rules_text = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
 
 
 
 
173
  except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
174
+ elif STORAGE_BACKEND == "HF_DATASET":
175
  try:
176
+ logger.info(f"Loading rules from HF Dataset: {HF_RULES_DATASET_REPO}")
177
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
178
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
179
+ temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
180
+ logger.info(f"Loaded {len(temp_rules_text)} valid rules from HF Dataset.")
181
+ else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} has no 'train' split or 'rule_text' column.")
182
+ except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)
183
+
 
 
 
184
  _rules_items_list = sorted(list(set(temp_rules_text)))
185
+
186
+ # Build Rules FAISS Index
187
+ _faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
 
 
 
 
 
 
 
 
 
 
 
188
 
189
  _initialized = True
190
  logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
191
 
192
+
193
+ def _verify_and_rebuild_if_needed(index, items_list, text_extraction_fn):
194
+ """Self-healing function to ensure FAISS index is synced with the item list."""
195
+ if not index or index.ntotal != len(items_list):
196
+ logger.warning(
197
+ f"FAISS index mismatch detected (Index: {index.ntotal if index else 'None'}, List: {len(items_list)}). "
198
+ "Rebuilding index from in-memory cache."
199
+ )
200
+ return _build_faiss_index(items_list, text_extraction_fn)
201
+ return index
202
+
 
203
 
204
  # --- Memory Operations (Semantic) ---
205
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
206
  global _memory_items_list, _faiss_memory_index
207
+ if not _initialized: initialize_memory_system()
208
  if not _embedder or not _faiss_memory_index:
209
+ return False, "Memory system not ready for adding entries."
210
+
211
  memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
212
  memory_json_str = json.dumps(memory_obj)
213
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
214
+
215
  try:
216
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
217
+ embedding_np = np.array(embedding, dtype=np.float32)
218
+
 
 
219
  _faiss_memory_index.add(embedding_np)
220
  _memory_items_list.append(memory_json_str)
221
+
222
+ if STORAGE_BACKEND == "SQLITE":
223
  with _get_sqlite_connection() as conn:
224
+ conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
225
+ elif STORAGE_BACKEND == "HF_DATASET":
 
 
226
  Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
227
+
228
+ logger.info(f"Added memory. Cache size: {len(_memory_items_list)}, FAISS size: {_faiss_memory_index.ntotal}")
229
  return True, "Memory added successfully."
230
  except Exception as e:
231
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
232
  return False, f"Error adding memory: {e}"
233
 
234
  def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
235
+ global _faiss_memory_index
236
+ if not _initialized: initialize_memory_system()
237
+
238
+ # Self-healing: Verify index is synced with cache, rebuild if not.
239
+ _faiss_memory_index = _verify_and_rebuild_if_needed(
240
+ _faiss_memory_index, _memory_items_list,
241
+ lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
242
+ )
243
+
244
+ if not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
245
+ logger.debug("Cannot retrieve memories: index is empty.")
246
  return []
247
+
248
  try:
249
  query_embedding = _embedder.encode([query], convert_to_tensor=False)
250
+ query_embedding_np = np.array(query_embedding, dtype=np.float32)
 
 
 
251
  distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
252
+
253
+ results = [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
254
+ logger.info(f"Retrieved {len(results)} memories for query: '{query[:50]}...'")
 
 
 
 
255
  return results
256
  except Exception as e:
257
  logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
258
  return []
259
 
260
+
261
  # --- Rule (Insight) Operations (Semantic) ---
262
  def add_rule_entry(rule_text: str) -> tuple[bool, str]:
263
  global _rules_items_list, _faiss_rules_index
264
+ if not _initialized: initialize_memory_system()
265
+
266
  rule_text = rule_text.strip()
267
+ if not rule_text or "duplicate" == rule_text or rule_text in _rules_items_list:
268
+ return False, "duplicate or invalid"
269
+ if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I):
270
  return False, "Invalid rule format."
271
+
272
  try:
273
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
274
+ embedding_np = np.array(embedding, dtype=np.float32)
 
275
  _faiss_rules_index.add(embedding_np)
276
  _rules_items_list.append(rule_text)
277
  _rules_items_list.sort()
278
+
279
+ if STORAGE_BACKEND == "SQLITE":
280
  with _get_sqlite_connection() as conn:
281
+ conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
282
+ elif STORAGE_BACKEND == "HF_DATASET":
 
 
283
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
 
284
  return True, "Rule added successfully."
285
  except Exception as e:
286
  logger.error(f"Error adding rule entry: {e}", exc_info=True)
287
  return False, f"Error adding rule: {e}"
288
 
289
  def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
290
+ global _faiss_rules_index
291
+ if not _initialized: initialize_memory_system()
292
+
293
+ _faiss_rules_index = _verify_and_rebuild_if_needed(_faiss_rules_index, _rules_items_list, lambda r: r)
294
+
295
+ if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
296
  try:
297
  query_embedding = _embedder.encode([query], convert_to_tensor=False)
298
+ query_embedding_np = np.array(query_embedding, dtype=np.float32)
 
299
  distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
300
+ return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
 
 
301
  except Exception as e:
302
  logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
303
  return []
304
 
305
  def remove_rule_entry(rule_text_to_delete: str) -> bool:
306
  global _rules_items_list, _faiss_rules_index
307
+ if not _initialized: initialize_memory_system()
 
308
  rule_text_to_delete = rule_text_to_delete.strip()
309
  if rule_text_to_delete not in _rules_items_list: return False
310
  try:
311
  _rules_items_list.remove(rule_text_to_delete)
312
+ _faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
313
+
314
+ if STORAGE_BACKEND == "SQLITE":
 
 
 
 
 
 
 
 
 
 
 
315
  with _get_sqlite_connection() as conn:
316
+ conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
317
+ elif STORAGE_BACKEND == "HF_DATASET":
 
318
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
 
319
  return True
320
  except Exception as e:
321
  logger.error(f"Error removing rule entry: {e}", exc_info=True)
 
323
 
324
  # --- Utility functions to get all data (for UI display, etc.) ---
325
  def get_all_rules_cached() -> list[str]:
326
+ if not _initialized: initialize_memory_system()
327
  return list(_rules_items_list)
328
 
329
  def get_all_memories_cached() -> list[dict]:
330
+ if not _initialized: initialize_memory_system()
331
+ return [json.loads(m) for m in _memory_items_list if m]
 
 
 
 
332
 
333
  def clear_all_memory_data_backend() -> bool:
334
  global _memory_items_list, _faiss_memory_index
335
+ if not _initialized: initialize_memory_system()
336
+ _memory_items_list = []
337
+ if _faiss_memory_index: _faiss_memory_index.reset()
338
  try:
339
+ if STORAGE_BACKEND == "SQLITE":
340
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
341
+ elif STORAGE_BACKEND == "HF_DATASET":
342
  Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
343
+ logger.info("All memories cleared.")
344
+ return True
 
345
  except Exception as e:
346
+ logger.error(f"Error clearing all memory data: {e}"); return False
 
 
347
 
348
  def clear_all_rules_data_backend() -> bool:
349
  global _rules_items_list, _faiss_rules_index
350
+ if not _initialized: initialize_memory_system()
351
+ _rules_items_list = []
352
+ if _faiss_rules_index: _faiss_rules_index.reset()
353
  try:
354
+ if STORAGE_BACKEND == "SQLITE":
355
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
356
+ elif STORAGE_BACKEND == "HF_DATASET":
357
  Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
358
+ logger.info("All rules cleared.")
359
+ return True
 
360
  except Exception as e:
361
+ logger.error(f"Error clearing all rules data: {e}"); return False
 
 
362
 
363
  FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
364
  FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
 
368
  faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
369
  if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
370
  if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
371
+ faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
 
 
 
372
  if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
373
+ faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
 
 
 
374
 
375
  def load_faiss_indices_from_disk():
376
  global _faiss_memory_index, _faiss_rules_index
377
  if not _initialized or not faiss: return
378
+ if os.path.exists(FAISS_MEMORY_PATH):
379
+ _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
380
+ if os.path.exists(FAISS_RULES_PATH):
381
+ _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)