Spaces:
Sleeping
Sleeping
Update memory_logic.py
Browse files- memory_logic.py +152 -212
memory_logic.py
CHANGED
@@ -61,7 +61,7 @@ def _get_sqlite_connection():
|
|
61 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
62 |
if db_dir and not os.path.exists(db_dir):
|
63 |
os.makedirs(db_dir, exist_ok=True)
|
64 |
-
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
65 |
|
66 |
def _init_sqlite_tables():
|
67 |
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
|
@@ -88,21 +88,48 @@ def _init_sqlite_tables():
|
|
88 |
except Exception as e:
|
89 |
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def initialize_memory_system():
|
93 |
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
|
94 |
|
95 |
with _init_lock:
|
96 |
if _initialized:
|
97 |
-
logger.info("Memory system already initialized.")
|
98 |
return
|
99 |
|
100 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
101 |
init_start_time = time.time()
|
102 |
|
103 |
if not SentenceTransformer or not faiss or not np:
|
104 |
-
logger.error("Core RAG libraries
|
105 |
-
_initialized = False
|
106 |
return
|
107 |
|
108 |
if not _embedder:
|
@@ -110,246 +137,185 @@ def initialize_memory_system():
|
|
110 |
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
|
111 |
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
|
112 |
_dimension = _embedder.get_sentence_embedding_dimension() or 384
|
113 |
-
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
|
114 |
except Exception as e:
|
115 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
116 |
-
_initialized = False
|
117 |
return
|
118 |
|
119 |
-
if STORAGE_BACKEND == "SQLITE":
|
120 |
-
_init_sqlite_tables()
|
121 |
|
122 |
-
# Load Memories
|
123 |
-
logger.info("Loading memories from persistent storage...")
|
124 |
temp_memories_json = []
|
125 |
-
if STORAGE_BACKEND == "
|
126 |
-
|
127 |
-
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
128 |
-
try:
|
129 |
-
with _get_sqlite_connection() as conn:
|
130 |
-
temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
|
131 |
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
|
132 |
-
elif STORAGE_BACKEND == "HF_DATASET"
|
133 |
try:
|
134 |
-
logger.info(f"
|
135 |
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
136 |
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
137 |
-
|
138 |
-
logger.info(f"
|
139 |
-
|
140 |
-
|
141 |
-
else:
|
142 |
-
logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} loaded, but 'train' split or 'memory_json' column is missing. Dataset structure: {dataset}")
|
143 |
-
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}", exc_info=True)
|
144 |
|
145 |
_memory_items_list = temp_memories_json
|
146 |
-
|
147 |
-
|
148 |
-
_faiss_memory_index =
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
mem_obj = json.loads(mem_json_str)
|
155 |
-
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
|
156 |
-
texts_to_embed_mem.append(text)
|
157 |
-
except json.JSONDecodeError: logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
|
158 |
-
|
159 |
-
if texts_to_embed_mem:
|
160 |
-
try:
|
161 |
-
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
|
162 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
163 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
|
164 |
-
_faiss_memory_index.add(embeddings_np)
|
165 |
-
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
|
166 |
-
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
|
167 |
-
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
|
168 |
-
|
169 |
-
# Load Rules
|
170 |
-
logger.info("Loading rules from persistent storage...")
|
171 |
temp_rules_text = []
|
172 |
-
if STORAGE_BACKEND == "
|
173 |
-
|
174 |
-
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
175 |
-
try:
|
176 |
-
with _get_sqlite_connection() as conn:
|
177 |
-
temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
|
178 |
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
|
179 |
-
elif STORAGE_BACKEND == "HF_DATASET"
|
180 |
try:
|
181 |
-
logger.info(f"
|
182 |
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
183 |
if "train" in dataset and "rule_text" in dataset["train"].column_names:
|
184 |
-
|
185 |
-
logger.info(f"
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules loaded, but 'train' split or 'rule_text' column is missing. Dataset structure: {dataset}")
|
190 |
-
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}", exc_info=True)
|
191 |
-
|
192 |
_rules_items_list = sorted(list(set(temp_rules_text)))
|
193 |
-
|
194 |
-
|
195 |
-
_faiss_rules_index =
|
196 |
-
if _rules_items_list:
|
197 |
-
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
|
198 |
-
if _rules_items_list:
|
199 |
-
try:
|
200 |
-
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
|
201 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
202 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
203 |
-
_faiss_rules_index.add(embeddings_np)
|
204 |
-
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
|
205 |
-
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
|
206 |
-
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
|
207 |
|
208 |
_initialized = True
|
209 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
if not
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
initialize_memory_system()
|
223 |
|
224 |
# --- Memory Operations (Semantic) ---
|
225 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
226 |
global _memory_items_list, _faiss_memory_index
|
227 |
-
|
228 |
if not _embedder or not _faiss_memory_index:
|
229 |
-
return False, "Memory system
|
|
|
230 |
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
|
231 |
memory_json_str = json.dumps(memory_obj)
|
232 |
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
|
|
|
233 |
try:
|
234 |
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
|
235 |
-
embedding_np = np.array(embedding, dtype=np.float32)
|
236 |
-
|
237 |
-
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
|
238 |
-
return False, "Embedding shape error."
|
239 |
_faiss_memory_index.add(embedding_np)
|
240 |
_memory_items_list.append(memory_json_str)
|
241 |
-
|
|
|
242 |
with _get_sqlite_connection() as conn:
|
243 |
-
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
|
244 |
-
|
245 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
246 |
-
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
|
247 |
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
248 |
-
|
|
|
249 |
return True, "Memory added successfully."
|
250 |
except Exception as e:
|
251 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
252 |
return False, f"Error adding memory: {e}"
|
253 |
|
254 |
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
|
255 |
-
|
256 |
-
if not
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
return []
|
|
|
259 |
try:
|
260 |
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
261 |
-
query_embedding_np = np.array(query_embedding, dtype=np.float32)
|
262 |
-
if query_embedding_np.shape[1] != _dimension:
|
263 |
-
logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
|
264 |
-
return []
|
265 |
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
|
266 |
-
|
267 |
-
for i in indices[0]
|
268 |
-
|
269 |
-
try: results.append(json.loads(_memory_items_list[i]))
|
270 |
-
except json.JSONDecodeError: logger.warning(f"Could not parse memory JSON from list at index {i}")
|
271 |
-
else: logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
|
272 |
-
logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
|
273 |
return results
|
274 |
except Exception as e:
|
275 |
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
|
276 |
return []
|
277 |
|
|
|
278 |
# --- Rule (Insight) Operations (Semantic) ---
|
279 |
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
|
280 |
global _rules_items_list, _faiss_rules_index
|
281 |
-
|
282 |
-
|
283 |
rule_text = rule_text.strip()
|
284 |
-
if not rule_text
|
285 |
-
|
|
|
286 |
return False, "Invalid rule format."
|
287 |
-
|
288 |
try:
|
289 |
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
|
290 |
-
embedding_np = np.array(embedding, dtype=np.float32)
|
291 |
-
if embedding_np.shape != (1, _dimension): return False, "Rule embedding shape error."
|
292 |
_faiss_rules_index.add(embedding_np)
|
293 |
_rules_items_list.append(rule_text)
|
294 |
_rules_items_list.sort()
|
295 |
-
|
|
|
296 |
with _get_sqlite_connection() as conn:
|
297 |
-
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
|
298 |
-
|
299 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
300 |
-
logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
|
301 |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
302 |
-
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
|
303 |
return True, "Rule added successfully."
|
304 |
except Exception as e:
|
305 |
logger.error(f"Error adding rule entry: {e}", exc_info=True)
|
306 |
return False, f"Error adding rule: {e}"
|
307 |
|
308 |
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
309 |
-
|
310 |
-
if not
|
311 |
-
|
312 |
-
|
|
|
|
|
313 |
try:
|
314 |
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
315 |
-
query_embedding_np = np.array(query_embedding, dtype=np.float32)
|
316 |
-
if query_embedding_np.shape[1] != _dimension: return []
|
317 |
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
|
318 |
-
|
319 |
-
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
|
320 |
-
return results
|
321 |
except Exception as e:
|
322 |
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
|
323 |
return []
|
324 |
|
325 |
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
326 |
global _rules_items_list, _faiss_rules_index
|
327 |
-
|
328 |
-
if not _embedder or not _faiss_rules_index: return False
|
329 |
rule_text_to_delete = rule_text_to_delete.strip()
|
330 |
if rule_text_to_delete not in _rules_items_list: return False
|
331 |
try:
|
332 |
_rules_items_list.remove(rule_text_to_delete)
|
333 |
-
_rules_items_list
|
334 |
-
|
335 |
-
if
|
336 |
-
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
|
337 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
338 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
339 |
-
new_faiss_rules_index.add(embeddings_np)
|
340 |
-
else:
|
341 |
-
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
|
342 |
-
_rules_items_list.append(rule_text_to_delete)
|
343 |
-
_rules_items_list.sort()
|
344 |
-
return False
|
345 |
-
_faiss_rules_index = new_faiss_rules_index
|
346 |
-
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
347 |
with _get_sqlite_connection() as conn:
|
348 |
-
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
|
349 |
-
|
350 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
351 |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
352 |
-
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
|
353 |
return True
|
354 |
except Exception as e:
|
355 |
logger.error(f"Error removing rule entry: {e}", exc_info=True)
|
@@ -357,50 +323,42 @@ def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
|
357 |
|
358 |
# --- Utility functions to get all data (for UI display, etc.) ---
|
359 |
def get_all_rules_cached() -> list[str]:
|
360 |
-
|
361 |
return list(_rules_items_list)
|
362 |
|
363 |
def get_all_memories_cached() -> list[dict]:
|
364 |
-
|
365 |
-
|
366 |
-
for mem_json_str in _memory_items_list:
|
367 |
-
try: mem_dicts.append(json.loads(mem_json_str))
|
368 |
-
except: pass
|
369 |
-
return mem_dicts
|
370 |
|
371 |
def clear_all_memory_data_backend() -> bool:
|
372 |
global _memory_items_list, _faiss_memory_index
|
373 |
-
|
374 |
-
|
|
|
375 |
try:
|
376 |
-
if STORAGE_BACKEND == "SQLITE"
|
377 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
378 |
-
elif STORAGE_BACKEND == "HF_DATASET"
|
379 |
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
380 |
-
|
381 |
-
|
382 |
-
logger.info("All memories cleared from backend and in-memory stores.")
|
383 |
except Exception as e:
|
384 |
-
logger.error(f"Error clearing all memory data: {e}")
|
385 |
-
success = False
|
386 |
-
return success
|
387 |
|
388 |
def clear_all_rules_data_backend() -> bool:
|
389 |
global _rules_items_list, _faiss_rules_index
|
390 |
-
|
391 |
-
|
|
|
392 |
try:
|
393 |
-
if STORAGE_BACKEND == "SQLITE"
|
394 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
|
395 |
-
elif STORAGE_BACKEND == "HF_DATASET"
|
396 |
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
397 |
-
|
398 |
-
|
399 |
-
logger.info("All rules cleared from backend and in-memory stores.")
|
400 |
except Exception as e:
|
401 |
-
logger.error(f"Error clearing all rules data: {e}")
|
402 |
-
success = False
|
403 |
-
return success
|
404 |
|
405 |
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
|
406 |
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
|
@@ -410,32 +368,14 @@ def save_faiss_indices_to_disk():
|
|
410 |
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
|
411 |
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
|
412 |
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
|
413 |
-
|
414 |
-
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
|
415 |
-
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
|
416 |
-
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
|
417 |
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
|
418 |
-
|
419 |
-
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
|
420 |
-
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
|
421 |
-
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
|
422 |
|
423 |
def load_faiss_indices_from_disk():
|
424 |
global _faiss_memory_index, _faiss_rules_index
|
425 |
if not _initialized or not faiss: return
|
426 |
-
if os.path.exists(FAISS_MEMORY_PATH)
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
|
431 |
-
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
|
432 |
-
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
|
433 |
-
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
|
434 |
-
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
|
435 |
-
try:
|
436 |
-
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
|
437 |
-
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
|
438 |
-
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
|
439 |
-
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
|
440 |
-
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
|
441 |
-
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
|
|
|
61 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
62 |
if db_dir and not os.path.exists(db_dir):
|
63 |
os.makedirs(db_dir, exist_ok=True)
|
64 |
+
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
65 |
|
66 |
def _init_sqlite_tables():
|
67 |
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
|
|
|
88 |
except Exception as e:
|
89 |
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
|
90 |
|
91 |
+
|
92 |
+
def _build_faiss_index(items_list, text_extraction_fn):
|
93 |
+
"""Builds a FAISS index from a list of items."""
|
94 |
+
if not _embedder:
|
95 |
+
logger.error("Cannot build FAISS index: Embedder not available.")
|
96 |
+
return None
|
97 |
+
|
98 |
+
index = faiss.IndexFlatL2(_dimension)
|
99 |
+
if not items_list:
|
100 |
+
return index
|
101 |
+
|
102 |
+
logger.info(f"Building FAISS index for {len(items_list)} items...")
|
103 |
+
texts_to_embed = [text_extraction_fn(item) for item in items_list]
|
104 |
+
|
105 |
+
try:
|
106 |
+
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
|
107 |
+
embeddings_np = np.array(embeddings, dtype=np.float32)
|
108 |
+
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(items_list):
|
109 |
+
index.add(embeddings_np)
|
110 |
+
logger.info(f"FAISS index built successfully with {index.ntotal} items.")
|
111 |
+
else:
|
112 |
+
logger.error(f"FAISS build failed: Embeddings shape error. Expected ({len(items_list)}, {_dimension}), Got {getattr(embeddings_np, 'shape', 'N/A')}")
|
113 |
+
return faiss.IndexFlatL2(_dimension) # Return empty index on failure
|
114 |
+
except Exception as e:
|
115 |
+
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
116 |
+
return faiss.IndexFlatL2(_dimension) # Return empty index on failure
|
117 |
+
|
118 |
+
return index
|
119 |
+
|
120 |
+
# --- Initialization ---
|
121 |
def initialize_memory_system():
|
122 |
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
|
123 |
|
124 |
with _init_lock:
|
125 |
if _initialized:
|
|
|
126 |
return
|
127 |
|
128 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
129 |
init_start_time = time.time()
|
130 |
|
131 |
if not SentenceTransformer or not faiss or not np:
|
132 |
+
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
|
|
|
133 |
return
|
134 |
|
135 |
if not _embedder:
|
|
|
137 |
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
|
138 |
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
|
139 |
_dimension = _embedder.get_sentence_embedding_dimension() or 384
|
|
|
140 |
except Exception as e:
|
141 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
|
|
142 |
return
|
143 |
|
144 |
+
if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()
|
|
|
145 |
|
146 |
+
# Load Memories from persistent storage
|
|
|
147 |
temp_memories_json = []
|
148 |
+
if STORAGE_BACKEND == "SQLITE":
|
149 |
+
try: temp_memories_json = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
|
|
|
|
|
|
|
|
|
150 |
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
|
151 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
152 |
try:
|
153 |
+
logger.info(f"Loading memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
|
154 |
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
155 |
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
156 |
+
temp_memories_json = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
|
157 |
+
logger.info(f"Loaded {len(temp_memories_json)} valid memories from HF Dataset.")
|
158 |
+
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} has no 'train' split or 'memory_json' column.")
|
159 |
+
except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
|
|
|
|
|
|
|
160 |
|
161 |
_memory_items_list = temp_memories_json
|
162 |
+
|
163 |
+
# Build Memory FAISS Index
|
164 |
+
_faiss_memory_index = _build_faiss_index(
|
165 |
+
_memory_items_list,
|
166 |
+
lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
|
167 |
+
)
|
168 |
+
|
169 |
+
# Load Rules from persistent storage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
temp_rules_text = []
|
171 |
+
if STORAGE_BACKEND == "SQLITE":
|
172 |
+
try: temp_rules_text = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
|
|
|
|
|
|
|
|
|
173 |
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
|
174 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
175 |
try:
|
176 |
+
logger.info(f"Loading rules from HF Dataset: {HF_RULES_DATASET_REPO}")
|
177 |
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
178 |
if "train" in dataset and "rule_text" in dataset["train"].column_names:
|
179 |
+
temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
|
180 |
+
logger.info(f"Loaded {len(temp_rules_text)} valid rules from HF Dataset.")
|
181 |
+
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} has no 'train' split or 'rule_text' column.")
|
182 |
+
except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)
|
183 |
+
|
|
|
|
|
|
|
184 |
_rules_items_list = sorted(list(set(temp_rules_text)))
|
185 |
+
|
186 |
+
# Build Rules FAISS Index
|
187 |
+
_faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
_initialized = True
|
190 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
191 |
|
192 |
+
|
193 |
+
def _verify_and_rebuild_if_needed(index, items_list, text_extraction_fn):
|
194 |
+
"""Self-healing function to ensure FAISS index is synced with the item list."""
|
195 |
+
if not index or index.ntotal != len(items_list):
|
196 |
+
logger.warning(
|
197 |
+
f"FAISS index mismatch detected (Index: {index.ntotal if index else 'None'}, List: {len(items_list)}). "
|
198 |
+
"Rebuilding index from in-memory cache."
|
199 |
+
)
|
200 |
+
return _build_faiss_index(items_list, text_extraction_fn)
|
201 |
+
return index
|
202 |
+
|
|
|
203 |
|
204 |
# --- Memory Operations (Semantic) ---
|
205 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
206 |
global _memory_items_list, _faiss_memory_index
|
207 |
+
if not _initialized: initialize_memory_system()
|
208 |
if not _embedder or not _faiss_memory_index:
|
209 |
+
return False, "Memory system not ready for adding entries."
|
210 |
+
|
211 |
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
|
212 |
memory_json_str = json.dumps(memory_obj)
|
213 |
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
|
214 |
+
|
215 |
try:
|
216 |
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
|
217 |
+
embedding_np = np.array(embedding, dtype=np.float32)
|
218 |
+
|
|
|
|
|
219 |
_faiss_memory_index.add(embedding_np)
|
220 |
_memory_items_list.append(memory_json_str)
|
221 |
+
|
222 |
+
if STORAGE_BACKEND == "SQLITE":
|
223 |
with _get_sqlite_connection() as conn:
|
224 |
+
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
|
225 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
|
|
|
|
226 |
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
227 |
+
|
228 |
+
logger.info(f"Added memory. Cache size: {len(_memory_items_list)}, FAISS size: {_faiss_memory_index.ntotal}")
|
229 |
return True, "Memory added successfully."
|
230 |
except Exception as e:
|
231 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
232 |
return False, f"Error adding memory: {e}"
|
233 |
|
234 |
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
|
235 |
+
global _faiss_memory_index
|
236 |
+
if not _initialized: initialize_memory_system()
|
237 |
+
|
238 |
+
# Self-healing: Verify index is synced with cache, rebuild if not.
|
239 |
+
_faiss_memory_index = _verify_and_rebuild_if_needed(
|
240 |
+
_faiss_memory_index, _memory_items_list,
|
241 |
+
lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
|
242 |
+
)
|
243 |
+
|
244 |
+
if not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
|
245 |
+
logger.debug("Cannot retrieve memories: index is empty.")
|
246 |
return []
|
247 |
+
|
248 |
try:
|
249 |
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
250 |
+
query_embedding_np = np.array(query_embedding, dtype=np.float32)
|
|
|
|
|
|
|
251 |
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
|
252 |
+
|
253 |
+
results = [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
|
254 |
+
logger.info(f"Retrieved {len(results)} memories for query: '{query[:50]}...'")
|
|
|
|
|
|
|
|
|
255 |
return results
|
256 |
except Exception as e:
|
257 |
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
|
258 |
return []
|
259 |
|
260 |
+
|
261 |
# --- Rule (Insight) Operations (Semantic) ---
|
262 |
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
|
263 |
global _rules_items_list, _faiss_rules_index
|
264 |
+
if not _initialized: initialize_memory_system()
|
265 |
+
|
266 |
rule_text = rule_text.strip()
|
267 |
+
if not rule_text or "duplicate" == rule_text or rule_text in _rules_items_list:
|
268 |
+
return False, "duplicate or invalid"
|
269 |
+
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I):
|
270 |
return False, "Invalid rule format."
|
271 |
+
|
272 |
try:
|
273 |
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
|
274 |
+
embedding_np = np.array(embedding, dtype=np.float32)
|
|
|
275 |
_faiss_rules_index.add(embedding_np)
|
276 |
_rules_items_list.append(rule_text)
|
277 |
_rules_items_list.sort()
|
278 |
+
|
279 |
+
if STORAGE_BACKEND == "SQLITE":
|
280 |
with _get_sqlite_connection() as conn:
|
281 |
+
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
|
282 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
|
|
|
|
283 |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
|
|
284 |
return True, "Rule added successfully."
|
285 |
except Exception as e:
|
286 |
logger.error(f"Error adding rule entry: {e}", exc_info=True)
|
287 |
return False, f"Error adding rule: {e}"
|
288 |
|
289 |
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
290 |
+
global _faiss_rules_index
|
291 |
+
if not _initialized: initialize_memory_system()
|
292 |
+
|
293 |
+
_faiss_rules_index = _verify_and_rebuild_if_needed(_faiss_rules_index, _rules_items_list, lambda r: r)
|
294 |
+
|
295 |
+
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
|
296 |
try:
|
297 |
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
298 |
+
query_embedding_np = np.array(query_embedding, dtype=np.float32)
|
|
|
299 |
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
|
300 |
+
return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
|
|
|
|
|
301 |
except Exception as e:
|
302 |
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
|
303 |
return []
|
304 |
|
305 |
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
306 |
global _rules_items_list, _faiss_rules_index
|
307 |
+
if not _initialized: initialize_memory_system()
|
|
|
308 |
rule_text_to_delete = rule_text_to_delete.strip()
|
309 |
if rule_text_to_delete not in _rules_items_list: return False
|
310 |
try:
|
311 |
_rules_items_list.remove(rule_text_to_delete)
|
312 |
+
_faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
|
313 |
+
|
314 |
+
if STORAGE_BACKEND == "SQLITE":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
with _get_sqlite_connection() as conn:
|
316 |
+
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
|
317 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
|
|
318 |
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
|
|
319 |
return True
|
320 |
except Exception as e:
|
321 |
logger.error(f"Error removing rule entry: {e}", exc_info=True)
|
|
|
323 |
|
324 |
# --- Utility functions to get all data (for UI display, etc.) ---
|
325 |
def get_all_rules_cached() -> list[str]:
|
326 |
+
if not _initialized: initialize_memory_system()
|
327 |
return list(_rules_items_list)
|
328 |
|
329 |
def get_all_memories_cached() -> list[dict]:
|
330 |
+
if not _initialized: initialize_memory_system()
|
331 |
+
return [json.loads(m) for m in _memory_items_list if m]
|
|
|
|
|
|
|
|
|
332 |
|
333 |
def clear_all_memory_data_backend() -> bool:
|
334 |
global _memory_items_list, _faiss_memory_index
|
335 |
+
if not _initialized: initialize_memory_system()
|
336 |
+
_memory_items_list = []
|
337 |
+
if _faiss_memory_index: _faiss_memory_index.reset()
|
338 |
try:
|
339 |
+
if STORAGE_BACKEND == "SQLITE":
|
340 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
341 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
342 |
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
343 |
+
logger.info("All memories cleared.")
|
344 |
+
return True
|
|
|
345 |
except Exception as e:
|
346 |
+
logger.error(f"Error clearing all memory data: {e}"); return False
|
|
|
|
|
347 |
|
348 |
def clear_all_rules_data_backend() -> bool:
|
349 |
global _rules_items_list, _faiss_rules_index
|
350 |
+
if not _initialized: initialize_memory_system()
|
351 |
+
_rules_items_list = []
|
352 |
+
if _faiss_rules_index: _faiss_rules_index.reset()
|
353 |
try:
|
354 |
+
if STORAGE_BACKEND == "SQLITE":
|
355 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
|
356 |
+
elif STORAGE_BACKEND == "HF_DATASET":
|
357 |
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
358 |
+
logger.info("All rules cleared.")
|
359 |
+
return True
|
|
|
360 |
except Exception as e:
|
361 |
+
logger.error(f"Error clearing all rules data: {e}"); return False
|
|
|
|
|
362 |
|
363 |
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
|
364 |
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
|
|
|
368 |
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
|
369 |
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
|
370 |
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
|
371 |
+
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
|
|
|
|
|
|
|
372 |
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
|
373 |
+
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
|
|
|
|
|
|
|
374 |
|
375 |
def load_faiss_indices_from_disk():
|
376 |
global _faiss_memory_index, _faiss_rules_index
|
377 |
if not _initialized or not faiss: return
|
378 |
+
if os.path.exists(FAISS_MEMORY_PATH):
|
379 |
+
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
|
380 |
+
if os.path.exists(FAISS_RULES_PATH):
|
381 |
+
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|