Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from datetime import datetime
|
|
8 |
from dotenv import load_dotenv
|
9 |
import gradio as gr
|
10 |
import time
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
@@ -262,7 +263,7 @@ Combine all findings into a single JSON list of operations. If there are multipl
|
|
262 |
def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
|
263 |
global current_chat_session_history
|
264 |
cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
|
265 |
-
def_detect_out_md, def_fmt_out_txt, def_dl_btn = gr.Markdown("*Processing...*"), gr.Textbox("*Waiting...*"), gr.DownloadButton(interactive=False, value=None, visible=False)
|
266 |
if not user_msg_txt.strip():
|
267 |
status_txt = "Error: Empty message."
|
268 |
updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
|
@@ -274,6 +275,7 @@ def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_na
|
|
274 |
if internal_hist[0]["role"] == "system" and len(internal_hist) > (MAX_HISTORY_TURNS * 2 + 1) : internal_hist = [internal_hist[0]] + internal_hist[-(MAX_HISTORY_TURNS * 2):]
|
275 |
else: internal_hist = internal_hist[-(MAX_HISTORY_TURNS * 2):]
|
276 |
final_bot_resp_acc, insights_used_parsed = "", []
|
|
|
277 |
try:
|
278 |
processor_gen = process_user_interaction_gradio(user_input=user_msg_txt, provider_name=sel_prov_name, model_display_name=sel_model_disp_name, chat_history_for_prompt=internal_hist, custom_system_prompt=cust_sys_prompt.strip() or None, ui_api_key_override=ui_api_key.strip() if ui_api_key else None)
|
279 |
curr_bot_disp_msg = ""
|
@@ -291,7 +293,11 @@ def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_na
|
|
291 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt: updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg or "(No text)")
|
292 |
def_fmt_out_txt = gr.Textbox(value=curr_bot_disp_msg)
|
293 |
if curr_bot_disp_msg and not curr_bot_disp_msg.startswith("Error:"):
|
294 |
-
|
|
|
|
|
|
|
|
|
295 |
insights_md = "### Insights Considered:\n" + ("\n".join([f"- **[{i.get('type','N/A')}|{i.get('score','N/A')}]** {i.get('text','N/A')[:100]}..." for i in insights_used_parsed[:3]]) if insights_used_parsed else "*None specific.*")
|
296 |
def_detect_out_md = gr.Markdown(insights_md)
|
297 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn)
|
@@ -311,6 +317,9 @@ def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_na
|
|
311 |
status_txt = "Response complete. Background learning initiated."
|
312 |
else: status_txt = "Processing finished; no response or error."
|
313 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn)
|
|
|
|
|
|
|
314 |
|
315 |
def ui_view_rules_action_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
|
316 |
def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
|
@@ -370,53 +379,100 @@ def ui_upload_memories_action_fn(uploaded_file_obj, progress=gr.Progress()):
|
|
370 |
custom_theme = gr.themes.Base(primary_hue="teal", secondary_hue="purple", neutral_hue="zinc", text_size="sm", spacing_size="sm", radius_size="sm", font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"])
|
371 |
custom_css = """ body { font-family: 'Inter', sans-serif; } .gradio-container { max-width: 96% !important; margin: auto !important; padding-top: 1rem !important; } footer { display: none !important; } .gr-button { white-space: nowrap; } .gr-input, .gr-textarea textarea, .gr-dropdown input { border-radius: 8px !important; } .gr-chatbot .message { border-radius: 10px !important; box-shadow: 0 2px 5px rgba(0,0,0,0.08) !important; } .prose { h1 { font-size: 1.8rem; margin-bottom: 0.6em; margin-top: 0.8em; } h2 { font-size: 1.4rem; margin-bottom: 0.5em; margin-top: 0.7em; } h3 { font-size: 1.15rem; margin-bottom: 0.4em; margin-top: 0.6em; } p { margin-bottom: 0.8em; line-height: 1.65; } ul, ol { margin-left: 1.5em; margin-bottom: 0.8em; } code { background-color: #f1f5f9; padding: 0.2em 0.45em; border-radius: 4px; font-size: 0.9em; } pre > code { display: block; padding: 0.8em; overflow-x: auto; background-color: #f8fafc; border: 1px solid #e2e8f0; border-radius: 6px;}} .compact-group .gr-input-label, .compact-group .gr-dropdown-label { font-size: 0.8rem !important; padding-bottom: 2px !important;}"""
|
372 |
|
373 |
-
with gr.Blocks(theme=custom_theme, css=custom_css, title="AI Research Mega Agent v4") as demo:
|
374 |
-
gr.Markdown("# 🚀 AI Research Mega Agent
|
375 |
avail_provs, def_prov = get_available_providers(), get_available_providers()[0] if get_available_providers() else None
|
376 |
def_models, def_model = get_model_display_names_for_provider(def_prov) if def_prov else [], get_default_model_display_name_for_provider(def_prov) if def_prov else None
|
377 |
-
|
378 |
-
with gr.
|
379 |
-
with gr.
|
380 |
-
gr.
|
381 |
-
|
382 |
-
|
383 |
-
gr.
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
with gr.Column(scale=3):
|
395 |
-
gr.Markdown("## 💬 AI Research Assistant Chat", elem_classes="prose"); main_chat_disp = gr.Chatbot(label="Chat", height=650, bubble_full_width=False, avatar_images=(None, "https://raw.githubusercontent.com/huggingface/brand-assets/main/hf-logo-with-title.png"), show_copy_button=True, render_markdown=True, sanitize_html=True)
|
396 |
-
with gr.Row(): user_msg_tb = gr.Textbox(show_label=False, placeholder="Ask a question or give an instruction...", scale=7, lines=1, max_lines=5, autofocus=True); send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
|
397 |
agent_stat_tb = gr.Textbox(label="Agent Status", interactive=False, lines=1, value="Initializing...")
|
398 |
-
with gr.
|
399 |
-
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
def dyn_upd_model_dd(sel_prov_dyn:str): models_dyn, def_model_dyn = get_model_display_names_for_provider(sel_prov_dyn), get_default_model_display_name_for_provider(sel_prov_dyn); return gr.Dropdown(choices=models_dyn, value=def_model_dyn, interactive=True)
|
402 |
prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)
|
403 |
chat_ins = [user_msg_tb, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
|
404 |
chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, detect_out_md, fmt_report_tb, dl_report_btn]
|
405 |
send_btn.click(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs); user_msg_tb.submit(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs)
|
|
|
406 |
view_rules_btn.click(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
upload_rules_fobj.upload(fn=ui_upload_rules_action_fn, inputs=[upload_rules_fobj], outputs=[rules_stat_tb], show_progress="full").then(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
408 |
clear_rules_btn.click(fn=lambda: "All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules.", outputs=rules_stat_tb).then(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
|
|
409 |
if MEMORY_STORAGE_BACKEND == "RAM" and save_faiss_ram_btn is not None:
|
410 |
def save_faiss_action_with_feedback_fn(): save_faiss_indices_to_disk(); gr.Info("Attempted to save FAISS indices to disk.")
|
411 |
save_faiss_ram_btn.click(fn=save_faiss_action_with_feedback_fn, inputs=None, outputs=None)
|
|
|
412 |
view_mems_btn.click(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
413 |
upload_mems_fobj.upload(fn=ui_upload_memories_action_fn, inputs=[upload_mems_fobj], outputs=[mems_stat_tb], show_progress="full").then(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
414 |
clear_mems_btn.click(fn=lambda: "All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories.", outputs=mems_stat_tb).then(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
|
|
415 |
def app_load_fn(): initialize_memory_system(); logger.info("App loaded. Memory system initialized."); return f"AI Systems Initialized (Backend: {MEMORY_STORAGE_BACKEND}). Ready."
|
416 |
demo.load(fn=app_load_fn, inputs=None, outputs=agent_stat_tb)
|
417 |
|
418 |
if __name__ == "__main__":
|
419 |
-
logger.info(f"Starting Gradio AI Research Mega Agent (v4 with Advanced Memory: {MEMORY_STORAGE_BACKEND})...")
|
420 |
app_port, app_server = int(os.getenv("GRADIO_PORT", 7860)), os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
|
421 |
app_debug, app_share = os.getenv("GRADIO_DEBUG", "False").lower()=="true", os.getenv("GRADIO_SHARE", "False").lower()=="true"
|
422 |
logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
import gradio as gr
|
10 |
import time
|
11 |
+
import tempfile # For temporary file for download
|
12 |
|
13 |
load_dotenv()
|
14 |
|
|
|
263 |
def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
|
264 |
global current_chat_session_history
|
265 |
cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
|
266 |
+
def_detect_out_md, def_fmt_out_txt, def_dl_btn = gr.Markdown("*Processing...*"), gr.Textbox("*Waiting...*"), gr.DownloadButton(interactive=False, value=None, visible=False) # Ensure DownloadButton is part of initial yield
|
267 |
if not user_msg_txt.strip():
|
268 |
status_txt = "Error: Empty message."
|
269 |
updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
|
|
|
275 |
if internal_hist[0]["role"] == "system" and len(internal_hist) > (MAX_HISTORY_TURNS * 2 + 1) : internal_hist = [internal_hist[0]] + internal_hist[-(MAX_HISTORY_TURNS * 2):]
|
276 |
else: internal_hist = internal_hist[-(MAX_HISTORY_TURNS * 2):]
|
277 |
final_bot_resp_acc, insights_used_parsed = "", []
|
278 |
+
temp_dl_file_path = None # For DownloadButton
|
279 |
try:
|
280 |
processor_gen = process_user_interaction_gradio(user_input=user_msg_txt, provider_name=sel_prov_name, model_display_name=sel_model_disp_name, chat_history_for_prompt=internal_hist, custom_system_prompt=cust_sys_prompt.strip() or None, ui_api_key_override=ui_api_key.strip() if ui_api_key else None)
|
281 |
curr_bot_disp_msg = ""
|
|
|
293 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt: updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg or "(No text)")
|
294 |
def_fmt_out_txt = gr.Textbox(value=curr_bot_disp_msg)
|
295 |
if curr_bot_disp_msg and not curr_bot_disp_msg.startswith("Error:"):
|
296 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", encoding='utf-8') as tmpfile:
|
297 |
+
tmpfile.write(curr_bot_disp_msg)
|
298 |
+
temp_dl_file_path = tmpfile.name
|
299 |
+
def_dl_btn = gr.DownloadButton(label="Download Report (.md)", value=temp_dl_file_path, visible=True, interactive=True)
|
300 |
+
else: def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
|
301 |
insights_md = "### Insights Considered:\n" + ("\n".join([f"- **[{i.get('type','N/A')}|{i.get('score','N/A')}]** {i.get('text','N/A')[:100]}..." for i in insights_used_parsed[:3]]) if insights_used_parsed else "*None specific.*")
|
302 |
def_detect_out_md = gr.Markdown(insights_md)
|
303 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn)
|
|
|
317 |
status_txt = "Response complete. Background learning initiated."
|
318 |
else: status_txt = "Processing finished; no response or error."
|
319 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn)
|
320 |
+
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
|
321 |
+
try: os.unlink(temp_dl_file_path)
|
322 |
+
except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path}: {e_unlink}")
|
323 |
|
324 |
def ui_view_rules_action_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
|
325 |
def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
|
|
|
379 |
custom_theme = gr.themes.Base(primary_hue="teal", secondary_hue="purple", neutral_hue="zinc", text_size="sm", spacing_size="sm", radius_size="sm", font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"])
|
380 |
custom_css = """ body { font-family: 'Inter', sans-serif; } .gradio-container { max-width: 96% !important; margin: auto !important; padding-top: 1rem !important; } footer { display: none !important; } .gr-button { white-space: nowrap; } .gr-input, .gr-textarea textarea, .gr-dropdown input { border-radius: 8px !important; } .gr-chatbot .message { border-radius: 10px !important; box-shadow: 0 2px 5px rgba(0,0,0,0.08) !important; } .prose { h1 { font-size: 1.8rem; margin-bottom: 0.6em; margin-top: 0.8em; } h2 { font-size: 1.4rem; margin-bottom: 0.5em; margin-top: 0.7em; } h3 { font-size: 1.15rem; margin-bottom: 0.4em; margin-top: 0.6em; } p { margin-bottom: 0.8em; line-height: 1.65; } ul, ol { margin-left: 1.5em; margin-bottom: 0.8em; } code { background-color: #f1f5f9; padding: 0.2em 0.45em; border-radius: 4px; font-size: 0.9em; } pre > code { display: block; padding: 0.8em; overflow-x: auto; background-color: #f8fafc; border: 1px solid #e2e8f0; border-radius: 6px;}} .compact-group .gr-input-label, .compact-group .gr-dropdown-label { font-size: 0.8rem !important; padding-bottom: 2px !important;}"""
|
381 |
|
382 |
+
with gr.Blocks(theme=custom_theme, css=custom_css, title="AI Research Mega Agent v4.1") as demo:
|
383 |
+
gr.Markdown("# 🚀 AI Research Mega Agent", elem_classes="prose")
|
384 |
avail_provs, def_prov = get_available_providers(), get_available_providers()[0] if get_available_providers() else None
|
385 |
def_models, def_model = get_model_display_names_for_provider(def_prov) if def_prov else [], get_default_model_display_name_for_provider(def_prov) if def_prov else None
|
386 |
+
|
387 |
+
with gr.Tabs() as main_tabs:
|
388 |
+
with gr.TabItem("💬 Chat Agent", id=0):
|
389 |
+
with gr.Row():
|
390 |
+
with gr.Column(scale=1, min_width=300):
|
391 |
+
gr.Markdown("### ⚙️ Configuration", elem_classes="prose")
|
392 |
+
with gr.Group(elem_classes="compact-group"):
|
393 |
+
prov_sel_dd = gr.Dropdown(label="Provider", choices=avail_provs, value=def_prov, interactive=True)
|
394 |
+
model_sel_dd = gr.Dropdown(label="Model", choices=def_models, value=def_model, interactive=True)
|
395 |
+
api_key_tb = gr.Textbox(label="API Key Override", type="password", placeholder="Optional", info="Overrides .env key for session.")
|
396 |
+
with gr.Group(elem_classes="compact-group"):
|
397 |
+
sys_prompt_tb = gr.Textbox(label="System Prompt Base", lines=8, value=DEFAULT_SYSTEM_PROMPT, interactive=True)
|
398 |
+
with gr.Column(scale=3):
|
399 |
+
main_chat_disp = gr.Chatbot(label="AI Research Chat", height=600, bubble_full_width=False, avatar_images=(None, "https://raw.githubusercontent.com/huggingface/brand-assets/main/hf-logo-with-title.png"), show_copy_button=True, render_markdown=True, sanitize_html=True)
|
400 |
+
with gr.Row():
|
401 |
+
user_msg_tb = gr.Textbox(show_label=False, placeholder="Ask a question or give an instruction...", scale=7, lines=1, max_lines=5, autofocus=True)
|
402 |
+
send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
|
|
|
|
|
|
|
403 |
agent_stat_tb = gr.Textbox(label="Agent Status", interactive=False, lines=1, value="Initializing...")
|
404 |
+
with gr.Accordion("📝 Full Response / Output", open=True):
|
405 |
+
fmt_report_tb = gr.Textbox(label="Current Research Output", lines=15, interactive=True, show_copy_button=True, value="*AI responses will appear here...*")
|
406 |
+
dl_report_btn = gr.DownloadButton(label="Download Report", interactive=False, visible=False) # Filename set dynamically
|
407 |
+
detect_out_md = gr.Markdown("*Insights used or other intermediate details will show here...*")
|
408 |
+
|
409 |
+
with gr.TabItem("🧠 Knowledge Base Management", id=1):
|
410 |
+
gr.Markdown("## Knowledge Base (Backend: " + MEMORY_STORAGE_BACKEND + ")", elem_classes="prose")
|
411 |
+
with gr.Row():
|
412 |
+
with gr.Column(scale=1):
|
413 |
+
gr.Markdown("### Rules (Learned Insights)", elem_classes="prose")
|
414 |
+
rules_disp_ta = gr.TextArea(label="View/Edit Rules (one per line or '---' separated)", lines=15, interactive=True) # Make editable for direct modification
|
415 |
+
with gr.Row():
|
416 |
+
view_rules_btn = gr.Button("Load Rules into View"); save_edited_rules_btn = gr.Button("Save Edited Rules from View", variant="primary")
|
417 |
+
upload_rules_fobj = gr.File(label="Upload Rules File (.txt/.jsonl)", file_types=[".txt", ".jsonl"])
|
418 |
+
rules_stat_tb = gr.Textbox(label="Rules Action Status", interactive=False, lines=2)
|
419 |
+
with gr.Row():
|
420 |
+
clear_rules_btn = gr.Button("⚠️ Clear All Rules", variant="stop")
|
421 |
+
save_faiss_ram_btn = gr.Button("Save FAISS Indices", visible=(MEMORY_STORAGE_BACKEND == "RAM")) # Visible only if RAM
|
422 |
+
|
423 |
+
with gr.Column(scale=1):
|
424 |
+
gr.Markdown("### Memories (Past Interactions)", elem_classes="prose")
|
425 |
+
mems_disp_json = gr.JSON(label="View Memories (JSON format)") # JSON is good for list of dicts
|
426 |
+
with gr.Row():
|
427 |
+
view_mems_btn = gr.Button("Load Memories into View")
|
428 |
+
upload_mems_fobj = gr.File(label="Upload Memories File (.jsonl)", file_types=[".jsonl"])
|
429 |
+
mems_stat_tb = gr.Textbox(label="Memories Action Status", interactive=False, lines=2)
|
430 |
+
clear_mems_btn = gr.Button("⚠️ Clear All Memories", variant="stop")
|
431 |
+
|
432 |
def dyn_upd_model_dd(sel_prov_dyn:str): models_dyn, def_model_dyn = get_model_display_names_for_provider(sel_prov_dyn), get_default_model_display_name_for_provider(sel_prov_dyn); return gr.Dropdown(choices=models_dyn, value=def_model_dyn, interactive=True)
|
433 |
prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)
|
434 |
chat_ins = [user_msg_tb, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
|
435 |
chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, detect_out_md, fmt_report_tb, dl_report_btn]
|
436 |
send_btn.click(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs); user_msg_tb.submit(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs)
|
437 |
+
|
438 |
view_rules_btn.click(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
439 |
+
def save_edited_rules_action_fn(edited_rules_text: str, progress=gr.Progress()):
|
440 |
+
if not edited_rules_text.strip(): return "No rules text to save."
|
441 |
+
potential_rules = edited_rules_text.split("\n\n---\n\n")
|
442 |
+
if len(potential_rules) == 1 and "\n" in edited_rules_text: potential_rules = [r.strip() for r in edited_rules_text.splitlines() if r.strip()]
|
443 |
+
if not potential_rules: return "No rules found to process from editor."
|
444 |
+
# For saving edited, it's often easier to clear existing and re-add all from editor
|
445 |
+
# Or, implement a diff and selective add/remove (more complex)
|
446 |
+
# Simple approach: clear and re-add. User should be warned.
|
447 |
+
# For now, this will just attempt to add them, duplicates will be skipped by memory_logic
|
448 |
+
added, skipped, errors = 0,0,0; total = len(potential_rules)
|
449 |
+
progress(0, desc=f"Saving {total} rules from editor...")
|
450 |
+
for idx, rule_text in enumerate(potential_rules):
|
451 |
+
if not rule_text.strip(): continue
|
452 |
+
success, status_msg = add_rule_entry(rule_text.strip()) # add_rule_entry handles duplicates/format
|
453 |
+
if success: added +=1
|
454 |
+
elif status_msg == "duplicate": skipped +=1
|
455 |
+
else: errors +=1
|
456 |
+
progress((idx+1)/total)
|
457 |
+
return f"Editor Save: Added: {added}, Skipped (duplicates): {skipped}, Errors/Invalid: {errors}."
|
458 |
+
save_edited_rules_btn.click(fn=save_edited_rules_action_fn, inputs=[rules_disp_ta], outputs=[rules_stat_tb], show_progress="full")
|
459 |
+
|
460 |
upload_rules_fobj.upload(fn=ui_upload_rules_action_fn, inputs=[upload_rules_fobj], outputs=[rules_stat_tb], show_progress="full").then(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
461 |
clear_rules_btn.click(fn=lambda: "All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules.", outputs=rules_stat_tb).then(fn=ui_view_rules_action_fn, outputs=rules_disp_ta)
|
462 |
+
|
463 |
if MEMORY_STORAGE_BACKEND == "RAM" and save_faiss_ram_btn is not None:
|
464 |
def save_faiss_action_with_feedback_fn(): save_faiss_indices_to_disk(); gr.Info("Attempted to save FAISS indices to disk.")
|
465 |
save_faiss_ram_btn.click(fn=save_faiss_action_with_feedback_fn, inputs=None, outputs=None)
|
466 |
+
|
467 |
view_mems_btn.click(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
468 |
upload_mems_fobj.upload(fn=ui_upload_memories_action_fn, inputs=[upload_mems_fobj], outputs=[mems_stat_tb], show_progress="full").then(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
469 |
clear_mems_btn.click(fn=lambda: "All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories.", outputs=mems_stat_tb).then(fn=ui_view_memories_action_fn, outputs=mems_disp_json)
|
470 |
+
|
471 |
def app_load_fn(): initialize_memory_system(); logger.info("App loaded. Memory system initialized."); return f"AI Systems Initialized (Backend: {MEMORY_STORAGE_BACKEND}). Ready."
|
472 |
demo.load(fn=app_load_fn, inputs=None, outputs=agent_stat_tb)
|
473 |
|
474 |
if __name__ == "__main__":
|
475 |
+
logger.info(f"Starting Gradio AI Research Mega Agent (v4.1 with Advanced Memory: {MEMORY_STORAGE_BACKEND})...")
|
476 |
app_port, app_server = int(os.getenv("GRADIO_PORT", 7860)), os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
|
477 |
app_debug, app_share = os.getenv("GRADIO_DEBUG", "False").lower()=="true", os.getenv("GRADIO_SHARE", "False").lower()=="true"
|
478 |
logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
|