Spaces:
Sleeping
Sleeping
Update memory_logic.py
Browse files- memory_logic.py +147 -378
memory_logic.py
CHANGED
@@ -7,7 +7,6 @@ import logging
|
|
7 |
import re
|
8 |
import threading
|
9 |
|
10 |
-
# Conditionally import heavy dependencies
|
11 |
try:
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
import faiss
|
@@ -28,479 +27,249 @@ except ImportError:
|
|
28 |
load_dataset, Dataset = None, None
|
29 |
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
|
30 |
|
31 |
-
|
32 |
logger = logging.getLogger(__name__)
|
33 |
-
# Suppress verbose logs from dependencies
|
34 |
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
|
35 |
-
if logging.getLogger(lib_name):
|
36 |
logging.getLogger(lib_name).setLevel(logging.WARNING)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper() #HF_DATASET, RAM, SQLITE
|
41 |
-
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
|
42 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
43 |
-
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
|
44 |
-
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
|
45 |
|
46 |
-
# --- Globals for RAG within this module ---
|
47 |
_embedder = None
|
48 |
-
_dimension = 384
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
_faiss_rules_index = None
|
52 |
-
_rules_items_list = [] # Stores rule text strings
|
53 |
|
54 |
_initialized = False
|
55 |
_init_lock = threading.Lock()
|
56 |
|
57 |
-
# --- Helper: SQLite Connection ---
|
58 |
def _get_sqlite_connection():
|
59 |
if not sqlite3:
|
60 |
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
|
61 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
62 |
if db_dir and not os.path.exists(db_dir):
|
63 |
os.makedirs(db_dir, exist_ok=True)
|
64 |
-
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
def _init_sqlite_tables():
|
67 |
-
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
|
68 |
-
return
|
69 |
try:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
80 |
-
)
|
81 |
-
""")
|
82 |
-
# Stores the rule text directly
|
83 |
-
cursor.execute("""
|
84 |
-
CREATE TABLE IF NOT EXISTS rules (
|
85 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
86 |
-
rule_text TEXT NOT NULL UNIQUE,
|
87 |
-
# embedding BLOB,
|
88 |
-
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
89 |
-
)
|
90 |
-
""")
|
91 |
-
conn.commit()
|
92 |
-
logger.info("SQLite tables for memories and rules checked/created.")
|
93 |
except Exception as e:
|
94 |
-
logger.error(f"
|
|
|
95 |
|
96 |
-
# --- Initialization ---
|
97 |
def initialize_memory_system():
|
98 |
-
global _initialized, _embedder, _dimension
|
99 |
-
|
|
|
|
|
|
|
100 |
with _init_lock:
|
101 |
if _initialized:
|
102 |
-
logger.info("Memory system already initialized.")
|
103 |
return
|
104 |
|
105 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
106 |
init_start_time = time.time()
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
|
111 |
-
_initialized = False # Mark as not properly initialized
|
112 |
return
|
113 |
-
|
114 |
if not _embedder:
|
115 |
try:
|
116 |
-
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
|
117 |
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
|
118 |
_dimension = _embedder.get_sentence_embedding_dimension() or 384
|
119 |
-
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
|
120 |
except Exception as e:
|
121 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
if STORAGE_BACKEND == "SQLITE":
|
127 |
-
_init_sqlite_tables()
|
128 |
-
|
129 |
-
# 3. Load Memories
|
130 |
-
logger.info("Loading memories...")
|
131 |
-
temp_memories_json = []
|
132 |
-
if STORAGE_BACKEND == "RAM":
|
133 |
-
_memory_items_list = [] # Start fresh for RAM backend
|
134 |
-
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
135 |
try:
|
136 |
with _get_sqlite_connection() as conn:
|
137 |
-
|
138 |
-
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
|
139 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset
|
140 |
try:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
_memory_items_list = temp_memories_json
|
149 |
-
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
|
150 |
-
|
151 |
-
# 4. Build/Load FAISS Memory Index
|
152 |
-
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
|
153 |
-
if _memory_items_list:
|
154 |
-
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
|
155 |
-
# Extract text to embed from memory JSON objects
|
156 |
-
texts_to_embed_mem = []
|
157 |
-
for mem_json_str in _memory_items_list:
|
158 |
-
try:
|
159 |
-
mem_obj = json.loads(mem_json_str)
|
160 |
-
# Consistent embedding strategy: user input + bot response + takeaway
|
161 |
-
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
|
162 |
-
texts_to_embed_mem.append(text)
|
163 |
-
except json.JSONDecodeError:
|
164 |
-
logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
|
165 |
-
|
166 |
-
if texts_to_embed_mem:
|
167 |
-
try:
|
168 |
-
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False) # convert_to_numpy=True
|
169 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
170 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
|
171 |
-
_faiss_memory_index.add(embeddings_np)
|
172 |
-
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
|
173 |
-
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
|
174 |
-
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
|
175 |
-
|
176 |
-
|
177 |
-
# 5. Load Rules
|
178 |
-
logger.info("Loading rules...")
|
179 |
temp_rules_text = []
|
180 |
-
if STORAGE_BACKEND == "
|
181 |
-
_rules_items_list = []
|
182 |
-
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
183 |
try:
|
184 |
-
with _get_sqlite_connection() as conn:
|
185 |
-
|
186 |
-
|
187 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
|
188 |
try:
|
189 |
-
logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
|
190 |
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
191 |
if "train" in dataset and "rule_text" in dataset["train"].column_names:
|
192 |
-
temp_rules_text = [
|
193 |
-
|
194 |
-
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
|
195 |
-
|
196 |
-
_rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
|
197 |
-
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
|
198 |
|
199 |
-
|
200 |
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
201 |
if _rules_items_list:
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
|
206 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
207 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
208 |
-
_faiss_rules_index.add(embeddings_np)
|
209 |
-
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
|
210 |
-
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
|
211 |
-
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
|
212 |
|
213 |
_initialized = True
|
214 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
215 |
|
216 |
-
|
217 |
-
# --- Memory Operations (Semantic) ---
|
218 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
219 |
-
"""Adds a memory entry to the configured backend and FAISS index."""
|
220 |
-
global _memory_items_list, _faiss_memory_index
|
221 |
if not _initialized: initialize_memory_system()
|
222 |
-
if not _embedder
|
223 |
-
|
224 |
-
|
225 |
-
memory_obj = {
|
226 |
-
"user_input": user_input,
|
227 |
-
"metrics": metrics,
|
228 |
-
"bot_response": bot_response,
|
229 |
-
"timestamp": datetime.utcnow().isoformat()
|
230 |
-
}
|
231 |
memory_json_str = json.dumps(memory_obj)
|
232 |
-
|
233 |
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
|
234 |
|
235 |
try:
|
236 |
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
|
237 |
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
return False, "Embedding shape error."
|
242 |
-
|
243 |
-
# Add to FAISS
|
244 |
-
_faiss_memory_index.add(embedding_np)
|
245 |
-
|
246 |
-
# Add to in-memory list
|
247 |
-
_memory_items_list.append(memory_json_str)
|
248 |
|
249 |
-
# Add to persistent storage
|
250 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
251 |
with _get_sqlite_connection() as conn:
|
252 |
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
|
253 |
conn.commit()
|
254 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
255 |
-
|
256 |
-
|
257 |
-
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
|
258 |
|
259 |
-
logger.info(f"Added memory.
|
260 |
return True, "Memory added successfully."
|
261 |
except Exception as e:
|
262 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
263 |
-
# TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
|
264 |
return False, f"Error adding memory: {e}"
|
265 |
|
266 |
-
def
|
267 |
-
"""Retrieves k most relevant memories using semantic search."""
|
268 |
if not _initialized: initialize_memory_system()
|
269 |
-
if not _embedder
|
270 |
-
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
|
271 |
-
return []
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
|
282 |
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
for i in indices[0]:
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
295 |
except Exception as e:
|
296 |
-
logger.error(f"Error retrieving
|
297 |
return []
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
global _rules_items_list, _faiss_rules_index
|
304 |
if not _initialized: initialize_memory_system()
|
305 |
-
if not _embedder
|
306 |
-
return False, "Rule system or embedder not initialized."
|
307 |
-
|
308 |
rule_text = rule_text.strip()
|
309 |
-
if not rule_text: return False, "
|
310 |
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
|
311 |
return False, "Invalid rule format."
|
312 |
-
if rule_text in _rules_items_list:
|
313 |
-
return False, "duplicate"
|
314 |
-
|
315 |
try:
|
316 |
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
|
317 |
-
|
318 |
-
|
319 |
-
if embedding_np.shape != (1, _dimension):
|
320 |
-
return False, "Rule embedding shape error."
|
321 |
-
|
322 |
-
_faiss_rules_index.add(embedding_np)
|
323 |
_rules_items_list.append(rule_text)
|
324 |
_rules_items_list.sort()
|
325 |
-
|
326 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
327 |
with _get_sqlite_connection() as conn:
|
328 |
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
|
329 |
conn.commit()
|
330 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
|
335 |
-
return True, "Rule added successfully."
|
336 |
-
except Exception as e:
|
337 |
-
logger.error(f"Error adding rule entry: {e}", exc_info=True)
|
338 |
-
# Basic rollback if FAISS add succeeded
|
339 |
-
if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
|
340 |
-
# A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
|
341 |
-
# For simplicity, this is omitted here. State could be inconsistent on error.
|
342 |
-
pass
|
343 |
-
return False, f"Error adding rule: {e}"
|
344 |
-
|
345 |
-
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
346 |
-
"""Retrieves k most relevant rules using semantic search."""
|
347 |
-
if not _initialized: initialize_memory_system()
|
348 |
-
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
|
349 |
-
return []
|
350 |
-
try:
|
351 |
-
query_embedding = _embedder.encode([query], convert_to_tensor=False)
|
352 |
-
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
|
353 |
-
|
354 |
-
if query_embedding_np.shape[1] != _dimension: return []
|
355 |
-
|
356 |
-
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
|
357 |
-
results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
|
358 |
-
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
|
359 |
-
return results
|
360 |
-
except Exception as e:
|
361 |
-
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
|
362 |
-
return []
|
363 |
-
|
364 |
-
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
365 |
-
"""Removes a rule from backend and rebuilds FAISS for rules."""
|
366 |
-
global _rules_items_list, _faiss_rules_index
|
367 |
-
if not _initialized: initialize_memory_system()
|
368 |
-
if not _embedder or not _faiss_rules_index: return False
|
369 |
-
|
370 |
-
rule_text_to_delete = rule_text_to_delete.strip()
|
371 |
-
if rule_text_to_delete not in _rules_items_list:
|
372 |
-
return False # Not found
|
373 |
-
|
374 |
-
try:
|
375 |
-
_rules_items_list.remove(rule_text_to_delete)
|
376 |
-
_rules_items_list.sort() # Maintain sorted order
|
377 |
-
|
378 |
-
# Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
|
379 |
-
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
380 |
-
if _rules_items_list:
|
381 |
-
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
|
382 |
-
embeddings_np = np.array(embeddings, dtype=np.float32)
|
383 |
-
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
384 |
-
new_faiss_rules_index.add(embeddings_np)
|
385 |
-
else: # Should not happen if list is consistent
|
386 |
-
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
|
387 |
-
# Attempt to revert _rules_items_list (add back the rule)
|
388 |
-
_rules_items_list.append(rule_text_to_delete)
|
389 |
-
_rules_items_list.sort()
|
390 |
-
return False # Indicate failure
|
391 |
-
_faiss_rules_index = new_faiss_rules_index
|
392 |
-
|
393 |
-
# Remove from persistent storage
|
394 |
-
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
395 |
-
with _get_sqlite_connection() as conn:
|
396 |
-
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
|
397 |
-
conn.commit()
|
398 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
399 |
-
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
400 |
-
|
401 |
-
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
|
402 |
-
return True
|
403 |
except Exception as e:
|
404 |
-
logger.error(f"Error
|
405 |
-
|
406 |
-
return False
|
407 |
|
408 |
-
# --- Utility functions to get all data (for UI display, etc.) ---
|
409 |
def get_all_rules_cached() -> list[str]:
|
410 |
if not _initialized: initialize_memory_system()
|
411 |
-
return list(_rules_items_list)
|
412 |
-
|
413 |
-
def get_all_memories_cached() -> list[dict]:
|
414 |
-
if not _initialized: initialize_memory_system()
|
415 |
-
# Convert JSON strings to dicts for easier use by UI
|
416 |
-
mem_dicts = []
|
417 |
-
for mem_json_str in _memory_items_list:
|
418 |
-
try: mem_dicts.append(json.loads(mem_json_str))
|
419 |
-
except: pass # Ignore parse errors for display
|
420 |
-
return mem_dicts
|
421 |
-
|
422 |
-
def clear_all_memory_data_backend() -> bool:
|
423 |
-
"""Clears all memories from backend and resets in-memory FAISS/list."""
|
424 |
-
global _memory_items_list, _faiss_memory_index
|
425 |
-
if not _initialized: initialize_memory_system()
|
426 |
-
|
427 |
-
success = True
|
428 |
-
try:
|
429 |
-
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
430 |
-
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
431 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
432 |
-
# Deleting from HF usually means pushing an empty dataset
|
433 |
-
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
434 |
-
|
435 |
-
_memory_items_list = []
|
436 |
-
if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
|
437 |
-
logger.info("All memories cleared from backend and in-memory stores.")
|
438 |
-
except Exception as e:
|
439 |
-
logger.error(f"Error clearing all memory data: {e}")
|
440 |
-
success = False
|
441 |
-
return success
|
442 |
-
|
443 |
-
def clear_all_rules_data_backend() -> bool:
|
444 |
-
"""Clears all rules from backend and resets in-memory FAISS/list."""
|
445 |
-
global _rules_items_list, _faiss_rules_index
|
446 |
-
if not _initialized: initialize_memory_system()
|
447 |
-
|
448 |
-
success = True
|
449 |
-
try:
|
450 |
-
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
451 |
-
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
|
452 |
-
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
453 |
-
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
454 |
-
|
455 |
-
_rules_items_list = []
|
456 |
-
if _faiss_rules_index: _faiss_rules_index.reset()
|
457 |
-
logger.info("All rules cleared from backend and in-memory stores.")
|
458 |
-
except Exception as e:
|
459 |
-
logger.error(f"Error clearing all rules data: {e}")
|
460 |
-
success = False
|
461 |
-
return success
|
462 |
-
|
463 |
-
# Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
|
464 |
-
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
|
465 |
-
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
|
466 |
-
|
467 |
-
def save_faiss_indices_to_disk():
|
468 |
-
if not _initialized or not faiss: return
|
469 |
-
|
470 |
-
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
|
471 |
-
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
|
472 |
-
|
473 |
-
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
|
474 |
-
try:
|
475 |
-
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
|
476 |
-
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
|
477 |
-
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
|
478 |
-
|
479 |
-
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
|
480 |
-
try:
|
481 |
-
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
|
482 |
-
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
|
483 |
-
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
|
484 |
-
|
485 |
-
def load_faiss_indices_from_disk():
|
486 |
-
global _faiss_memory_index, _faiss_rules_index
|
487 |
-
if not _initialized or not faiss: return
|
488 |
-
|
489 |
-
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
|
490 |
-
try:
|
491 |
-
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
|
492 |
-
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
|
493 |
-
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
|
494 |
-
# Consistency check: FAISS ntotal vs len(_memory_items_list)
|
495 |
-
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
|
496 |
-
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
|
497 |
-
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
|
498 |
-
|
499 |
-
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
|
500 |
-
try:
|
501 |
-
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
|
502 |
-
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
|
503 |
-
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
|
504 |
-
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
|
505 |
-
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
|
506 |
-
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
|
|
|
7 |
import re
|
8 |
import threading
|
9 |
|
|
|
10 |
try:
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
import faiss
|
|
|
27 |
load_dataset, Dataset = None, None
|
28 |
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
|
29 |
|
|
|
30 |
logger = logging.getLogger(__name__)
|
|
|
31 |
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
|
32 |
+
if logging.getLogger(lib_name):
|
33 |
logging.getLogger(lib_name).setLevel(logging.WARNING)
|
34 |
|
35 |
+
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper()
|
36 |
+
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
|
|
|
|
|
37 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
38 |
+
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
|
39 |
+
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
|
40 |
|
|
|
41 |
_embedder = None
|
42 |
+
_dimension = 384
|
43 |
+
|
44 |
+
_long_term_memory_items_list = []
|
45 |
+
_faiss_long_term_memory_index = None
|
46 |
+
_short_term_memory_items_list = []
|
47 |
+
_faiss_short_term_memory_index = None
|
48 |
+
|
49 |
+
_rules_items_list = []
|
50 |
_faiss_rules_index = None
|
|
|
51 |
|
52 |
_initialized = False
|
53 |
_init_lock = threading.Lock()
|
54 |
|
|
|
55 |
def _get_sqlite_connection():
|
56 |
if not sqlite3:
|
57 |
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
|
58 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
59 |
if db_dir and not os.path.exists(db_dir):
|
60 |
os.makedirs(db_dir, exist_ok=True)
|
61 |
+
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
62 |
+
|
63 |
+
def _build_faiss_index_from_json_strings(memory_items: list[str]) -> faiss.Index | None:
|
64 |
+
if not memory_items or not _embedder:
|
65 |
+
return faiss.IndexFlatL2(_dimension)
|
66 |
+
|
67 |
+
texts_to_embed = []
|
68 |
+
valid_indices = []
|
69 |
+
for i, mem_json_str in enumerate(memory_items):
|
70 |
+
try:
|
71 |
+
mem_obj = json.loads(mem_json_str)
|
72 |
+
text = f"User: {mem_obj.get('user_input', '')}\nAI: {mem_obj.get('bot_response', '')}\nTakeaway: {mem_obj.get('metrics', {}).get('takeaway', 'N/A')}"
|
73 |
+
texts_to_embed.append(text)
|
74 |
+
valid_indices.append(i)
|
75 |
+
except json.JSONDecodeError:
|
76 |
+
continue
|
77 |
+
|
78 |
+
if not texts_to_embed:
|
79 |
+
return faiss.IndexFlatL2(_dimension)
|
80 |
|
|
|
|
|
|
|
81 |
try:
|
82 |
+
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
|
83 |
+
embeddings_np = np.array(embeddings, dtype=np.float32)
|
84 |
+
if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
|
85 |
+
index = faiss.IndexFlatL2(_dimension)
|
86 |
+
index.add(embeddings_np)
|
87 |
+
return index
|
88 |
+
else:
|
89 |
+
logger.error(f"Error building FAISS index: embedding shape mismatch.")
|
90 |
+
return faiss.IndexFlatL2(_dimension)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
except Exception as e:
|
92 |
+
logger.error(f"Failed to build FAISS index: {e}", exc_info=True)
|
93 |
+
return faiss.IndexFlatL2(_dimension)
|
94 |
|
|
|
95 |
def initialize_memory_system():
|
96 |
+
global _initialized, _embedder, _dimension
|
97 |
+
global _long_term_memory_items_list, _faiss_long_term_memory_index
|
98 |
+
global _short_term_memory_items_list, _faiss_short_term_memory_index
|
99 |
+
global _rules_items_list, _faiss_rules_index
|
100 |
+
|
101 |
with _init_lock:
|
102 |
if _initialized:
|
|
|
103 |
return
|
104 |
|
105 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
106 |
init_start_time = time.time()
|
107 |
|
108 |
+
if not all([SentenceTransformer, faiss, np]):
|
109 |
+
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
|
|
|
|
|
110 |
return
|
111 |
+
|
112 |
if not _embedder:
|
113 |
try:
|
|
|
114 |
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
|
115 |
_dimension = _embedder.get_sentence_embedding_dimension() or 384
|
|
|
116 |
except Exception as e:
|
117 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
118 |
+
return
|
119 |
+
|
120 |
+
long_term_mems = []
|
121 |
+
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
123 |
with _get_sqlite_connection() as conn:
|
124 |
+
long_term_mems = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
|
125 |
+
except Exception as e: logger.error(f"Error loading long-term memories from SQLite: {e}")
|
126 |
+
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
127 |
try:
|
128 |
+
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
129 |
+
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
130 |
+
long_term_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str)]
|
131 |
+
except Exception as e: logger.error(f"Error loading long-term memories from HF Dataset: {e}")
|
132 |
+
|
133 |
+
_long_term_memory_items_list = long_term_mems
|
134 |
+
logger.info(f"Loaded {len(_long_term_memory_items_list)} long-term memory items.")
|
135 |
+
_faiss_long_term_memory_index = _build_faiss_index_from_json_strings(_long_term_memory_items_list)
|
136 |
+
logger.info(f"Long-term memory FAISS index built. Total items: {_faiss_long_term_memory_index.ntotal if _faiss_long_term_memory_index else 'N/A'}")
|
137 |
+
|
138 |
+
_short_term_memory_items_list = []
|
139 |
+
_faiss_short_term_memory_index = faiss.IndexFlatL2(_dimension)
|
140 |
+
logger.info("Short-term memory initialized (empty).")
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
temp_rules_text = []
|
143 |
+
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
|
|
|
|
144 |
try:
|
145 |
+
with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules")]
|
146 |
+
except Exception: pass
|
147 |
+
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
|
|
148 |
try:
|
|
|
149 |
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
150 |
if "train" in dataset and "rule_text" in dataset["train"].column_names:
|
151 |
+
temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
|
152 |
+
except Exception: pass
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
_rules_items_list = sorted(list(set(temp_rules_text)))
|
155 |
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
156 |
if _rules_items_list:
|
157 |
+
rule_embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
|
158 |
+
_faiss_rules_index.add(np.array(rule_embeddings, dtype=np.float32))
|
159 |
+
logger.info(f"Rules FAISS index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
_initialized = True
|
162 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
163 |
|
|
|
|
|
164 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
|
|
|
|
165 |
if not _initialized: initialize_memory_system()
|
166 |
+
if not _embedder: return False, "Embedder not initialized."
|
167 |
+
|
168 |
+
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
memory_json_str = json.dumps(memory_obj)
|
|
|
170 |
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
|
171 |
|
172 |
try:
|
173 |
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
|
174 |
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
|
175 |
|
176 |
+
_faiss_short_term_memory_index.add(embedding_np)
|
177 |
+
_short_term_memory_items_list.append(memory_json_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
|
|
179 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
180 |
with _get_sqlite_connection() as conn:
|
181 |
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
|
182 |
conn.commit()
|
183 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
184 |
+
all_mems_for_push = _long_term_memory_items_list + _short_term_memory_items_list
|
185 |
+
Dataset.from_dict({"memory_json": list(set(all_mems_for_push))}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
|
|
186 |
|
187 |
+
logger.info(f"Added memory. Short-term count: {_faiss_short_term_memory_index.ntotal}")
|
188 |
return True, "Memory added successfully."
|
189 |
except Exception as e:
|
190 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
|
|
191 |
return False, f"Error adding memory: {e}"
|
192 |
|
193 |
+
def search_memories(query: str, k: int = 3, threshold: float = 1.0) -> tuple[list[dict], str]:
|
|
|
194 |
if not _initialized: initialize_memory_system()
|
195 |
+
if not _embedder: return [], "uninitialized"
|
|
|
|
|
196 |
|
197 |
+
query_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
|
198 |
+
final_results = {}
|
199 |
+
search_path = "short"
|
200 |
+
|
201 |
+
if _faiss_short_term_memory_index and _faiss_short_term_memory_index.ntotal > 0:
|
202 |
+
distances, indices = _faiss_short_term_memory_index.search(query_embedding, min(k, _faiss_short_term_memory_index.ntotal))
|
203 |
+
best_dist = distances[0][0] if len(distances[0]) > 0 else float('inf')
|
|
|
|
|
204 |
|
205 |
+
if best_dist < threshold:
|
206 |
+
logger.info(f"Found relevant short-term memories (best distance: {best_dist:.4f}).")
|
207 |
+
for i in indices[0]:
|
208 |
+
res = json.loads(_short_term_memory_items_list[i])
|
209 |
+
final_results[res['timestamp']] = res
|
210 |
+
return list(final_results.values()), search_path
|
211 |
+
|
212 |
+
logger.info("No relevant short-term memories found. Escalating to deep search on long-term memory.")
|
213 |
+
search_path = "deep"
|
214 |
+
|
215 |
+
if _faiss_long_term_memory_index and _faiss_long_term_memory_index.ntotal > 0:
|
216 |
+
distances, indices = _faiss_long_term_memory_index.search(query_embedding, min(k, _faiss_long_term_memory_index.ntotal))
|
217 |
for i in indices[0]:
|
218 |
+
res = json.loads(_long_term_memory_items_list[i])
|
219 |
+
final_results[res['timestamp']] = res
|
220 |
+
|
221 |
+
return list(final_results.values()), search_path
|
222 |
+
|
223 |
+
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
224 |
+
if not _initialized: initialize_memory_system()
|
225 |
+
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
|
226 |
+
try:
|
227 |
+
q_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
|
228 |
+
_, indices = _faiss_rules_index.search(q_embedding, min(k, _faiss_rules_index.ntotal))
|
229 |
+
return [_rules_items_list[i] for i in indices[0]]
|
230 |
except Exception as e:
|
231 |
+
logger.error(f"Error retrieving rules: {e}", exc_info=True)
|
232 |
return []
|
233 |
|
234 |
+
def get_all_memories_cached() -> list[dict]:
|
235 |
+
if not _initialized: initialize_memory_system()
|
236 |
+
all_mems = _long_term_memory_items_list + _short_term_memory_items_list
|
237 |
+
seen_ts = set()
|
238 |
+
unique_mem_dicts = []
|
239 |
+
for mem_json_str in reversed(all_mems):
|
240 |
+
try:
|
241 |
+
mem_dict = json.loads(mem_json_str)
|
242 |
+
if mem_dict['timestamp'] not in seen_ts:
|
243 |
+
unique_mem_dicts.append(mem_dict)
|
244 |
+
seen_ts.add(mem_dict['timestamp'])
|
245 |
+
except: continue
|
246 |
+
return unique_mem_dicts
|
247 |
+
|
248 |
+
# --- The rest of the utility functions (add_rule, get_rules, clear functions) remain the same ---
|
249 |
+
def add_rule_entry(rule_text: str):
|
250 |
global _rules_items_list, _faiss_rules_index
|
251 |
if not _initialized: initialize_memory_system()
|
252 |
+
if not _embedder: return False, "Embedder not initialized."
|
|
|
|
|
253 |
rule_text = rule_text.strip()
|
254 |
+
if not rule_text or rule_text in _rules_items_list: return False, "duplicate or empty"
|
255 |
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
|
256 |
return False, "Invalid rule format."
|
|
|
|
|
|
|
257 |
try:
|
258 |
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
|
259 |
+
_faiss_rules_index.add(np.array(embedding, dtype=np.float32))
|
|
|
|
|
|
|
|
|
|
|
260 |
_rules_items_list.append(rule_text)
|
261 |
_rules_items_list.sort()
|
|
|
262 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
263 |
with _get_sqlite_connection() as conn:
|
264 |
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
|
265 |
conn.commit()
|
266 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
267 |
+
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
|
268 |
+
return True, "Rule added"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
except Exception as e:
|
270 |
+
logger.error(f"Error adding rule: {e}", exc_info=True)
|
271 |
+
return False, str(e)
|
|
|
272 |
|
|
|
273 |
def get_all_rules_cached() -> list[str]:
|
274 |
if not _initialized: initialize_memory_system()
|
275 |
+
return list(_rules_items_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|