broadfield-dev commited on
Commit
c9ee5e6
·
verified ·
1 Parent(s): b396191

Update memory_logic.py

Browse files
Files changed (1) hide show
  1. memory_logic.py +147 -378
memory_logic.py CHANGED
@@ -7,7 +7,6 @@ import logging
7
  import re
8
  import threading
9
 
10
- # Conditionally import heavy dependencies
11
  try:
12
  from sentence_transformers import SentenceTransformer
13
  import faiss
@@ -28,479 +27,249 @@ except ImportError:
28
  load_dataset, Dataset = None, None
29
  logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
30
 
31
-
32
  logger = logging.getLogger(__name__)
33
- # Suppress verbose logs from dependencies
34
  for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
35
- if logging.getLogger(lib_name): # Check if logger exists
36
  logging.getLogger(lib_name).setLevel(logging.WARNING)
37
 
38
-
39
- # --- Configuration (Read directly from environment variables) ---
40
- STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper() #HF_DATASET, RAM, SQLITE
41
- SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
42
  HF_TOKEN = os.getenv("HF_TOKEN")
43
- HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
44
- HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
45
 
46
- # --- Globals for RAG within this module ---
47
  _embedder = None
48
- _dimension = 384 # Default, will be set by embedder
49
- _faiss_memory_index = None
50
- _memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
 
 
 
 
 
51
  _faiss_rules_index = None
52
- _rules_items_list = [] # Stores rule text strings
53
 
54
  _initialized = False
55
  _init_lock = threading.Lock()
56
 
57
- # --- Helper: SQLite Connection ---
58
  def _get_sqlite_connection():
59
  if not sqlite3:
60
  raise ImportError("sqlite3 module is required for SQLite backend but not found.")
61
  db_dir = os.path.dirname(SQLITE_DB_PATH)
62
  if db_dir and not os.path.exists(db_dir):
63
  os.makedirs(db_dir, exist_ok=True)
64
- return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- def _init_sqlite_tables():
67
- if STORAGE_BACKEND != "SQLITE" or not sqlite3:
68
- return
69
  try:
70
- with _get_sqlite_connection() as conn:
71
- cursor = conn.cursor()
72
- # Stores JSON string of the memory object
73
- cursor.execute("""
74
- CREATE TABLE IF NOT EXISTS memories (
75
- id INTEGER PRIMARY KEY AUTOINCREMENT,
76
- memory_json TEXT NOT NULL,
77
- # Optionally add embedding here if not using separate FAISS index
78
- # embedding BLOB,
79
- created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
80
- )
81
- """)
82
- # Stores the rule text directly
83
- cursor.execute("""
84
- CREATE TABLE IF NOT EXISTS rules (
85
- id INTEGER PRIMARY KEY AUTOINCREMENT,
86
- rule_text TEXT NOT NULL UNIQUE,
87
- # embedding BLOB,
88
- created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
89
- )
90
- """)
91
- conn.commit()
92
- logger.info("SQLite tables for memories and rules checked/created.")
93
  except Exception as e:
94
- logger.error(f"SQLite table initialization error: {e}", exc_info=True)
 
95
 
96
- # --- Initialization ---
97
  def initialize_memory_system():
98
- global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
99
-
 
 
 
100
  with _init_lock:
101
  if _initialized:
102
- logger.info("Memory system already initialized.")
103
  return
104
 
105
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
106
  init_start_time = time.time()
107
 
108
- # 1. Load Sentence Transformer Model (always needed for semantic operations)
109
- if not SentenceTransformer or not faiss or not np:
110
- logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
111
- _initialized = False # Mark as not properly initialized
112
  return
113
-
114
  if not _embedder:
115
  try:
116
- logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
117
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
118
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
119
- logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
120
  except Exception as e:
121
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
122
- _initialized = False
123
- return # Cannot proceed without embedder
124
-
125
- # 2. Initialize SQLite if used
126
- if STORAGE_BACKEND == "SQLITE":
127
- _init_sqlite_tables()
128
-
129
- # 3. Load Memories
130
- logger.info("Loading memories...")
131
- temp_memories_json = []
132
- if STORAGE_BACKEND == "RAM":
133
- _memory_items_list = [] # Start fresh for RAM backend
134
- elif STORAGE_BACKEND == "SQLITE" and sqlite3:
135
  try:
136
  with _get_sqlite_connection() as conn:
137
- temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
138
- except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
139
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
140
  try:
141
- logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
142
- dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) # Add download_mode if needed
143
- if "train" in dataset and "memory_json" in dataset["train"].column_names: # Assuming 'memory_json' column
144
- temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
145
- else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
146
- except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
 
 
 
 
 
 
 
147
 
148
- _memory_items_list = temp_memories_json
149
- logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
150
-
151
- # 4. Build/Load FAISS Memory Index
152
- _faiss_memory_index = faiss.IndexFlatL2(_dimension)
153
- if _memory_items_list:
154
- logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
155
- # Extract text to embed from memory JSON objects
156
- texts_to_embed_mem = []
157
- for mem_json_str in _memory_items_list:
158
- try:
159
- mem_obj = json.loads(mem_json_str)
160
- # Consistent embedding strategy: user input + bot response + takeaway
161
- text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
162
- texts_to_embed_mem.append(text)
163
- except json.JSONDecodeError:
164
- logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
165
-
166
- if texts_to_embed_mem:
167
- try:
168
- embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False) # convert_to_numpy=True
169
- embeddings_np = np.array(embeddings, dtype=np.float32)
170
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
171
- _faiss_memory_index.add(embeddings_np)
172
- else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
173
- except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
174
- logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
175
-
176
-
177
- # 5. Load Rules
178
- logger.info("Loading rules...")
179
  temp_rules_text = []
180
- if STORAGE_BACKEND == "RAM":
181
- _rules_items_list = []
182
- elif STORAGE_BACKEND == "SQLITE" and sqlite3:
183
  try:
184
- with _get_sqlite_connection() as conn:
185
- temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
186
- except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
187
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
188
  try:
189
- logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
190
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
191
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
192
- temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
193
- else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
194
- except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
195
-
196
- _rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
197
- logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
198
 
199
- # 6. Build/Load FAISS Rules Index
200
  _faiss_rules_index = faiss.IndexFlatL2(_dimension)
201
  if _rules_items_list:
202
- logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
203
- if _rules_items_list: # Check again in case it became empty after filtering
204
- try:
205
- embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
206
- embeddings_np = np.array(embeddings, dtype=np.float32)
207
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
208
- _faiss_rules_index.add(embeddings_np)
209
- else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
210
- except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
211
- logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
212
 
213
  _initialized = True
214
  logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
215
 
216
-
217
- # --- Memory Operations (Semantic) ---
218
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
219
- """Adds a memory entry to the configured backend and FAISS index."""
220
- global _memory_items_list, _faiss_memory_index
221
  if not _initialized: initialize_memory_system()
222
- if not _embedder or not _faiss_memory_index:
223
- return False, "Memory system or embedder not initialized for adding memory."
224
-
225
- memory_obj = {
226
- "user_input": user_input,
227
- "metrics": metrics,
228
- "bot_response": bot_response,
229
- "timestamp": datetime.utcnow().isoformat()
230
- }
231
  memory_json_str = json.dumps(memory_obj)
232
-
233
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
234
 
235
  try:
236
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
237
  embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
238
 
239
- if embedding_np.shape != (1, _dimension):
240
- logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
241
- return False, "Embedding shape error."
242
-
243
- # Add to FAISS
244
- _faiss_memory_index.add(embedding_np)
245
-
246
- # Add to in-memory list
247
- _memory_items_list.append(memory_json_str)
248
 
249
- # Add to persistent storage
250
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
251
  with _get_sqlite_connection() as conn:
252
  conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
253
  conn.commit()
254
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
255
- # This can be slow, consider batching or async push
256
- logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
257
- Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
258
 
259
- logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
260
  return True, "Memory added successfully."
261
  except Exception as e:
262
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
263
- # TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
264
  return False, f"Error adding memory: {e}"
265
 
266
- def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
267
- """Retrieves k most relevant memories using semantic search."""
268
  if not _initialized: initialize_memory_system()
269
- if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
270
- logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
271
- return []
272
 
273
- try:
274
- query_embedding = _embedder.encode([query], convert_to_tensor=False)
275
- query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
276
-
277
- if query_embedding_np.shape[1] != _dimension:
278
- logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
279
- return []
280
-
281
- distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
282
 
283
- results = []
 
 
 
 
 
 
 
 
 
 
 
284
  for i in indices[0]:
285
- if 0 <= i < len(_memory_items_list):
286
- try:
287
- results.append(json.loads(_memory_items_list[i]))
288
- except json.JSONDecodeError:
289
- logger.warning(f"Could not parse memory JSON from list at index {i}")
290
- else:
291
- logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
292
-
293
- logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
294
- return results
 
 
295
  except Exception as e:
296
- logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
297
  return []
298
 
299
-
300
- # --- Rule (Insight) Operations (Semantic) ---
301
- def add_rule_entry(rule_text: str) -> tuple[bool, str]:
302
- """Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
 
 
 
 
 
 
 
 
 
 
 
 
303
  global _rules_items_list, _faiss_rules_index
304
  if not _initialized: initialize_memory_system()
305
- if not _embedder or not _faiss_rules_index:
306
- return False, "Rule system or embedder not initialized."
307
-
308
  rule_text = rule_text.strip()
309
- if not rule_text: return False, "Rule text cannot be empty."
310
  if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
311
  return False, "Invalid rule format."
312
- if rule_text in _rules_items_list:
313
- return False, "duplicate"
314
-
315
  try:
316
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
317
- embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
318
-
319
- if embedding_np.shape != (1, _dimension):
320
- return False, "Rule embedding shape error."
321
-
322
- _faiss_rules_index.add(embedding_np)
323
  _rules_items_list.append(rule_text)
324
  _rules_items_list.sort()
325
-
326
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
327
  with _get_sqlite_connection() as conn:
328
  conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
329
  conn.commit()
330
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
331
- logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
332
- Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
333
-
334
- logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
335
- return True, "Rule added successfully."
336
- except Exception as e:
337
- logger.error(f"Error adding rule entry: {e}", exc_info=True)
338
- # Basic rollback if FAISS add succeeded
339
- if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
340
- # A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
341
- # For simplicity, this is omitted here. State could be inconsistent on error.
342
- pass
343
- return False, f"Error adding rule: {e}"
344
-
345
- def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
346
- """Retrieves k most relevant rules using semantic search."""
347
- if not _initialized: initialize_memory_system()
348
- if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
349
- return []
350
- try:
351
- query_embedding = _embedder.encode([query], convert_to_tensor=False)
352
- query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
353
-
354
- if query_embedding_np.shape[1] != _dimension: return []
355
-
356
- distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
357
- results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
358
- logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
359
- return results
360
- except Exception as e:
361
- logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
362
- return []
363
-
364
- def remove_rule_entry(rule_text_to_delete: str) -> bool:
365
- """Removes a rule from backend and rebuilds FAISS for rules."""
366
- global _rules_items_list, _faiss_rules_index
367
- if not _initialized: initialize_memory_system()
368
- if not _embedder or not _faiss_rules_index: return False
369
-
370
- rule_text_to_delete = rule_text_to_delete.strip()
371
- if rule_text_to_delete not in _rules_items_list:
372
- return False # Not found
373
-
374
- try:
375
- _rules_items_list.remove(rule_text_to_delete)
376
- _rules_items_list.sort() # Maintain sorted order
377
-
378
- # Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
379
- new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
380
- if _rules_items_list:
381
- embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
382
- embeddings_np = np.array(embeddings, dtype=np.float32)
383
- if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
384
- new_faiss_rules_index.add(embeddings_np)
385
- else: # Should not happen if list is consistent
386
- logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
387
- # Attempt to revert _rules_items_list (add back the rule)
388
- _rules_items_list.append(rule_text_to_delete)
389
- _rules_items_list.sort()
390
- return False # Indicate failure
391
- _faiss_rules_index = new_faiss_rules_index
392
-
393
- # Remove from persistent storage
394
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
395
- with _get_sqlite_connection() as conn:
396
- conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
397
- conn.commit()
398
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
399
- Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
400
-
401
- logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
402
- return True
403
  except Exception as e:
404
- logger.error(f"Error removing rule entry: {e}", exc_info=True)
405
- # Potential partial failure, state might be inconsistent.
406
- return False
407
 
408
- # --- Utility functions to get all data (for UI display, etc.) ---
409
  def get_all_rules_cached() -> list[str]:
410
  if not _initialized: initialize_memory_system()
411
- return list(_rules_items_list)
412
-
413
- def get_all_memories_cached() -> list[dict]:
414
- if not _initialized: initialize_memory_system()
415
- # Convert JSON strings to dicts for easier use by UI
416
- mem_dicts = []
417
- for mem_json_str in _memory_items_list:
418
- try: mem_dicts.append(json.loads(mem_json_str))
419
- except: pass # Ignore parse errors for display
420
- return mem_dicts
421
-
422
- def clear_all_memory_data_backend() -> bool:
423
- """Clears all memories from backend and resets in-memory FAISS/list."""
424
- global _memory_items_list, _faiss_memory_index
425
- if not _initialized: initialize_memory_system()
426
-
427
- success = True
428
- try:
429
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
430
- with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
431
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
432
- # Deleting from HF usually means pushing an empty dataset
433
- Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
434
-
435
- _memory_items_list = []
436
- if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
437
- logger.info("All memories cleared from backend and in-memory stores.")
438
- except Exception as e:
439
- logger.error(f"Error clearing all memory data: {e}")
440
- success = False
441
- return success
442
-
443
- def clear_all_rules_data_backend() -> bool:
444
- """Clears all rules from backend and resets in-memory FAISS/list."""
445
- global _rules_items_list, _faiss_rules_index
446
- if not _initialized: initialize_memory_system()
447
-
448
- success = True
449
- try:
450
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
451
- with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
452
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
453
- Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
454
-
455
- _rules_items_list = []
456
- if _faiss_rules_index: _faiss_rules_index.reset()
457
- logger.info("All rules cleared from backend and in-memory stores.")
458
- except Exception as e:
459
- logger.error(f"Error clearing all rules data: {e}")
460
- success = False
461
- return success
462
-
463
- # Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
464
- FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
465
- FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
466
-
467
- def save_faiss_indices_to_disk():
468
- if not _initialized or not faiss: return
469
-
470
- faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
471
- if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
472
-
473
- if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
474
- try:
475
- faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
476
- logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
477
- except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
478
-
479
- if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
480
- try:
481
- faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
482
- logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
483
- except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
484
-
485
- def load_faiss_indices_from_disk():
486
- global _faiss_memory_index, _faiss_rules_index
487
- if not _initialized or not faiss: return
488
-
489
- if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
490
- try:
491
- logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
492
- _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
493
- logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
494
- # Consistency check: FAISS ntotal vs len(_memory_items_list)
495
- if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
496
- logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
497
- except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
498
-
499
- if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
500
- try:
501
- logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
502
- _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
503
- logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
504
- if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
505
- logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
506
- except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
 
7
  import re
8
  import threading
9
 
 
10
  try:
11
  from sentence_transformers import SentenceTransformer
12
  import faiss
 
27
  load_dataset, Dataset = None, None
28
  logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
29
 
 
30
  logger = logging.getLogger(__name__)
 
31
  for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
32
+ if logging.getLogger(lib_name):
33
  logging.getLogger(lib_name).setLevel(logging.WARNING)
34
 
35
+ STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper()
36
+ SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
 
 
37
  HF_TOKEN = os.getenv("HF_TOKEN")
38
+ HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
39
+ HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
40
 
 
41
  _embedder = None
42
+ _dimension = 384
43
+
44
+ _long_term_memory_items_list = []
45
+ _faiss_long_term_memory_index = None
46
+ _short_term_memory_items_list = []
47
+ _faiss_short_term_memory_index = None
48
+
49
+ _rules_items_list = []
50
  _faiss_rules_index = None
 
51
 
52
  _initialized = False
53
  _init_lock = threading.Lock()
54
 
 
55
  def _get_sqlite_connection():
56
  if not sqlite3:
57
  raise ImportError("sqlite3 module is required for SQLite backend but not found.")
58
  db_dir = os.path.dirname(SQLITE_DB_PATH)
59
  if db_dir and not os.path.exists(db_dir):
60
  os.makedirs(db_dir, exist_ok=True)
61
+ return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
62
+
63
+ def _build_faiss_index_from_json_strings(memory_items: list[str]) -> faiss.Index | None:
64
+ if not memory_items or not _embedder:
65
+ return faiss.IndexFlatL2(_dimension)
66
+
67
+ texts_to_embed = []
68
+ valid_indices = []
69
+ for i, mem_json_str in enumerate(memory_items):
70
+ try:
71
+ mem_obj = json.loads(mem_json_str)
72
+ text = f"User: {mem_obj.get('user_input', '')}\nAI: {mem_obj.get('bot_response', '')}\nTakeaway: {mem_obj.get('metrics', {}).get('takeaway', 'N/A')}"
73
+ texts_to_embed.append(text)
74
+ valid_indices.append(i)
75
+ except json.JSONDecodeError:
76
+ continue
77
+
78
+ if not texts_to_embed:
79
+ return faiss.IndexFlatL2(_dimension)
80
 
 
 
 
81
  try:
82
+ embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
83
+ embeddings_np = np.array(embeddings, dtype=np.float32)
84
+ if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
85
+ index = faiss.IndexFlatL2(_dimension)
86
+ index.add(embeddings_np)
87
+ return index
88
+ else:
89
+ logger.error(f"Error building FAISS index: embedding shape mismatch.")
90
+ return faiss.IndexFlatL2(_dimension)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  except Exception as e:
92
+ logger.error(f"Failed to build FAISS index: {e}", exc_info=True)
93
+ return faiss.IndexFlatL2(_dimension)
94
 
 
95
  def initialize_memory_system():
96
+ global _initialized, _embedder, _dimension
97
+ global _long_term_memory_items_list, _faiss_long_term_memory_index
98
+ global _short_term_memory_items_list, _faiss_short_term_memory_index
99
+ global _rules_items_list, _faiss_rules_index
100
+
101
  with _init_lock:
102
  if _initialized:
 
103
  return
104
 
105
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
106
  init_start_time = time.time()
107
 
108
+ if not all([SentenceTransformer, faiss, np]):
109
+ logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
 
 
110
  return
111
+
112
  if not _embedder:
113
  try:
 
114
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
115
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
 
116
  except Exception as e:
117
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
118
+ return
119
+
120
+ long_term_mems = []
121
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
 
 
 
 
 
 
 
 
122
  try:
123
  with _get_sqlite_connection() as conn:
124
+ long_term_mems = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
125
+ except Exception as e: logger.error(f"Error loading long-term memories from SQLite: {e}")
126
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
127
  try:
128
+ dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
129
+ if "train" in dataset and "memory_json" in dataset["train"].column_names:
130
+ long_term_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str)]
131
+ except Exception as e: logger.error(f"Error loading long-term memories from HF Dataset: {e}")
132
+
133
+ _long_term_memory_items_list = long_term_mems
134
+ logger.info(f"Loaded {len(_long_term_memory_items_list)} long-term memory items.")
135
+ _faiss_long_term_memory_index = _build_faiss_index_from_json_strings(_long_term_memory_items_list)
136
+ logger.info(f"Long-term memory FAISS index built. Total items: {_faiss_long_term_memory_index.ntotal if _faiss_long_term_memory_index else 'N/A'}")
137
+
138
+ _short_term_memory_items_list = []
139
+ _faiss_short_term_memory_index = faiss.IndexFlatL2(_dimension)
140
+ logger.info("Short-term memory initialized (empty).")
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  temp_rules_text = []
143
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
 
144
  try:
145
+ with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules")]
146
+ except Exception: pass
147
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
 
148
  try:
 
149
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
150
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
151
+ temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
152
+ except Exception: pass
 
 
 
 
153
 
154
+ _rules_items_list = sorted(list(set(temp_rules_text)))
155
  _faiss_rules_index = faiss.IndexFlatL2(_dimension)
156
  if _rules_items_list:
157
+ rule_embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
158
+ _faiss_rules_index.add(np.array(rule_embeddings, dtype=np.float32))
159
+ logger.info(f"Rules FAISS index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
 
 
 
 
 
 
 
160
 
161
  _initialized = True
162
  logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
163
 
 
 
164
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
 
 
165
  if not _initialized: initialize_memory_system()
166
+ if not _embedder: return False, "Embedder not initialized."
167
+
168
+ memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
 
 
 
 
 
 
169
  memory_json_str = json.dumps(memory_obj)
 
170
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
171
 
172
  try:
173
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
174
  embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
175
 
176
+ _faiss_short_term_memory_index.add(embedding_np)
177
+ _short_term_memory_items_list.append(memory_json_str)
 
 
 
 
 
 
 
178
 
 
179
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
180
  with _get_sqlite_connection() as conn:
181
  conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
182
  conn.commit()
183
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
184
+ all_mems_for_push = _long_term_memory_items_list + _short_term_memory_items_list
185
+ Dataset.from_dict({"memory_json": list(set(all_mems_for_push))}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
 
186
 
187
+ logger.info(f"Added memory. Short-term count: {_faiss_short_term_memory_index.ntotal}")
188
  return True, "Memory added successfully."
189
  except Exception as e:
190
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
 
191
  return False, f"Error adding memory: {e}"
192
 
193
+ def search_memories(query: str, k: int = 3, threshold: float = 1.0) -> tuple[list[dict], str]:
 
194
  if not _initialized: initialize_memory_system()
195
+ if not _embedder: return [], "uninitialized"
 
 
196
 
197
+ query_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
198
+ final_results = {}
199
+ search_path = "short"
200
+
201
+ if _faiss_short_term_memory_index and _faiss_short_term_memory_index.ntotal > 0:
202
+ distances, indices = _faiss_short_term_memory_index.search(query_embedding, min(k, _faiss_short_term_memory_index.ntotal))
203
+ best_dist = distances[0][0] if len(distances[0]) > 0 else float('inf')
 
 
204
 
205
+ if best_dist < threshold:
206
+ logger.info(f"Found relevant short-term memories (best distance: {best_dist:.4f}).")
207
+ for i in indices[0]:
208
+ res = json.loads(_short_term_memory_items_list[i])
209
+ final_results[res['timestamp']] = res
210
+ return list(final_results.values()), search_path
211
+
212
+ logger.info("No relevant short-term memories found. Escalating to deep search on long-term memory.")
213
+ search_path = "deep"
214
+
215
+ if _faiss_long_term_memory_index and _faiss_long_term_memory_index.ntotal > 0:
216
+ distances, indices = _faiss_long_term_memory_index.search(query_embedding, min(k, _faiss_long_term_memory_index.ntotal))
217
  for i in indices[0]:
218
+ res = json.loads(_long_term_memory_items_list[i])
219
+ final_results[res['timestamp']] = res
220
+
221
+ return list(final_results.values()), search_path
222
+
223
+ def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
224
+ if not _initialized: initialize_memory_system()
225
+ if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
226
+ try:
227
+ q_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
228
+ _, indices = _faiss_rules_index.search(q_embedding, min(k, _faiss_rules_index.ntotal))
229
+ return [_rules_items_list[i] for i in indices[0]]
230
  except Exception as e:
231
+ logger.error(f"Error retrieving rules: {e}", exc_info=True)
232
  return []
233
 
234
+ def get_all_memories_cached() -> list[dict]:
235
+ if not _initialized: initialize_memory_system()
236
+ all_mems = _long_term_memory_items_list + _short_term_memory_items_list
237
+ seen_ts = set()
238
+ unique_mem_dicts = []
239
+ for mem_json_str in reversed(all_mems):
240
+ try:
241
+ mem_dict = json.loads(mem_json_str)
242
+ if mem_dict['timestamp'] not in seen_ts:
243
+ unique_mem_dicts.append(mem_dict)
244
+ seen_ts.add(mem_dict['timestamp'])
245
+ except: continue
246
+ return unique_mem_dicts
247
+
248
+ # --- The rest of the utility functions (add_rule, get_rules, clear functions) remain the same ---
249
+ def add_rule_entry(rule_text: str):
250
  global _rules_items_list, _faiss_rules_index
251
  if not _initialized: initialize_memory_system()
252
+ if not _embedder: return False, "Embedder not initialized."
 
 
253
  rule_text = rule_text.strip()
254
+ if not rule_text or rule_text in _rules_items_list: return False, "duplicate or empty"
255
  if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
256
  return False, "Invalid rule format."
 
 
 
257
  try:
258
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
259
+ _faiss_rules_index.add(np.array(embedding, dtype=np.float32))
 
 
 
 
 
260
  _rules_items_list.append(rule_text)
261
  _rules_items_list.sort()
 
262
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
263
  with _get_sqlite_connection() as conn:
264
  conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
265
  conn.commit()
266
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
267
+ Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
268
+ return True, "Rule added"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  except Exception as e:
270
+ logger.error(f"Error adding rule: {e}", exc_info=True)
271
+ return False, str(e)
 
272
 
 
273
  def get_all_rules_cached() -> list[str]:
274
  if not _initialized: initialize_memory_system()
275
+ return list(_rules_items_list)