Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
import os
|
3 |
import json
|
4 |
import re
|
@@ -13,29 +12,26 @@ import xml.etree.ElementTree as ET
|
|
13 |
load_dotenv()
|
14 |
|
15 |
MEMORY_STORAGE_TYPE = "HF_DATASET"
|
16 |
-
# --- DEMO --- #
|
17 |
-
# If using HF_DATASET, specify the repository names here.
|
18 |
-
# These will override the .env file settings.
|
19 |
HF_DATASET_MEMORY_REPO = "broadfield-dev/ai-brain"
|
20 |
HF_DATASET_RULES_REPO = "broadfield-dev/ai-rules"
|
21 |
|
22 |
-
# Set environment variables based on the toggles above BEFORE importing other modules
|
23 |
os.environ['STORAGE_BACKEND'] = MEMORY_STORAGE_TYPE
|
24 |
if MEMORY_STORAGE_TYPE == "HF_DATASET":
|
25 |
os.environ['HF_MEMORY_DATASET_REPO'] = HF_DATASET_MEMORY_REPO
|
26 |
os.environ['HF_RULES_DATASET_REPO'] = HF_DATASET_RULES_REPO
|
27 |
-
# --- END CONFIGURATION ---
|
28 |
|
29 |
from model_logic import (
|
30 |
get_available_providers, get_model_display_names_for_provider,
|
31 |
get_default_model_display_name_for_provider, call_model_stream, MODELS_BY_PROVIDER
|
32 |
)
|
33 |
from memory_logic import (
|
34 |
-
initialize_memory_system,
|
35 |
-
|
36 |
-
add_rule_entry,
|
37 |
-
save_faiss_indices_to_disk, STORAGE_BACKEND as MEMORY_STORAGE_BACKEND,
|
38 |
-
|
|
|
|
|
39 |
)
|
40 |
from websearch_logic import scrape_url, search_and_scrape_duckduckgo, search_and_scrape_google
|
41 |
|
@@ -55,17 +51,11 @@ DEFAULT_SYSTEM_PROMPT = os.getenv(
|
|
55 |
"Your Name is Node. You are a Helpful AI Assistant, and your goal is to improve yourself, so that you can improve everybody elses life. Your job is to answer questions and perform research tasks accurately and thoroughly. You can use tools like web search and page browsing. When providing information from the web, cite your sources if possible. If asked to perform a task beyond your capabilities, explain politely. Be concise unless asked for detail."
|
56 |
)
|
57 |
|
58 |
-
# --- Startup Loading File Paths ---
|
59 |
LOAD_RULES_FILE = os.getenv("LOAD_RULES_FILE")
|
60 |
LOAD_MEMORIES_FILE = os.getenv("LOAD_MEMORIES_FILE")
|
61 |
-
logger.info(f"App Config: WebSearch={WEB_SEARCH_ENABLED}, ToolDecisionProvider={TOOL_DECISION_PROVIDER_ENV}, ToolDecisionModelID={TOOL_DECISION_MODEL_ID_ENV}, MemoryBackend={MEMORY_STORAGE_BACKEND}")
|
62 |
-
logger.info(f"Startup loading: Rules from {LOAD_RULES_FILE or 'None'}, Memories from {LOAD_MEMORIES_FILE or 'None'}")
|
63 |
|
64 |
-
|
65 |
-
# --- Helper Functions ---
|
66 |
def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
|
67 |
-
if not retrieved_insights_list:
|
68 |
-
return "No specific guiding principles or learned insights retrieved.", []
|
69 |
parsed = []
|
70 |
for text in retrieved_insights_list:
|
71 |
match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
|
@@ -75,206 +65,124 @@ def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str,
|
|
75 |
parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
|
76 |
try:
|
77 |
parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
|
78 |
-
except ValueError:
|
79 |
grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
|
80 |
for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
|
81 |
sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
|
82 |
return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed
|
83 |
|
84 |
def generate_interaction_metrics(user_input: str, bot_response: str, provider: str, model_display_name: str, api_key_override: str = None) -> dict:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
try:
|
90 |
-
metrics_provider_final, metrics_model_display_final = provider, model_display_name
|
91 |
metrics_model_env = os.getenv("METRICS_MODEL")
|
92 |
if metrics_model_env and "/" in metrics_model_env:
|
93 |
m_prov, m_id = metrics_model_env.split('/', 1)
|
94 |
m_disp_name = next((dn for dn, mid in MODELS_BY_PROVIDER.get(m_prov.lower(), {}).get("models", {}).items() if mid == m_id), None)
|
95 |
-
if m_disp_name:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
json_match
|
100 |
-
|
101 |
-
|
102 |
-
logger.warning(f"METRICS_GEN: Non-JSON response from {metrics_provider_final}/{metrics_model_display_final}: '{resp_str}'")
|
103 |
-
return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": "metrics format error"}
|
104 |
-
parsed_metrics = {"takeaway": metrics_data.get("takeaway", "N/A"), "response_success_score": float(metrics_data.get("response_success_score", 0.5)), "future_confidence_score": float(metrics_data.get("future_confidence_score", 0.5)), "error": metrics_data.get("error")}
|
105 |
-
logger.info(f"METRICS_GEN: Generated in {time.time() - metric_start_time:.2f}s. Data: {parsed_metrics}")
|
106 |
-
return parsed_metrics
|
107 |
except Exception as e:
|
108 |
-
logger.error(f"METRICS_GEN Error: {e}"
|
109 |
-
|
110 |
-
|
111 |
|
112 |
def process_user_interaction_gradio(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None):
|
113 |
-
process_start_time = time.time()
|
114 |
request_id = os.urandom(4).hex()
|
115 |
-
logger.info(f"PUI_GRADIO [{request_id}] Start. User: '{user_input[:50]}...'
|
116 |
history_str_for_prompt = "\n".join([f"{('User' if t_msg['role'] == 'user' else 'AI')}: {t_msg['content']}" for t_msg in chat_history_for_prompt[-(MAX_HISTORY_TURNS * 2):]])
|
117 |
-
yield "status", "<i>[Checking guidelines
|
118 |
-
initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5)
|
119 |
-
initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights)
|
120 |
-
logger.info(f"PUI_GRADIO [{request_id}]: Initial RAG (insights) found {len(initial_insights)}. Context: {initial_insights_ctx_str[:150]}...")
|
121 |
-
|
122 |
-
action_type, action_input_dict = "quick_respond", {}
|
123 |
-
user_input_lower = user_input.lower()
|
124 |
-
time_before_tool_decision = time.time()
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
else:
|
131 |
yield "status", "<i>[LLM choosing best approach...]</i>"
|
132 |
tool_definitions = {
|
133 |
-
"answer_using_conversation_memory": "Use if the user's query refers to a
|
134 |
-
"search_duckduckgo_and_report": "Use for general knowledge questions,
|
135 |
-
"
|
136 |
-
"quick_respond": "Use as a fallback for simple greetings, acknowledgements, or if the answer is obvious from the immediate context and requires no special tools."
|
137 |
}
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
tool_sys_prompt = "You are a precise routing agent. Your job is to analyze the user's query and the conversation context, then select the single best action to provide an answer. Output ONLY a single, valid JSON object with 'action' and 'action_input' keys. Do not add any other text or explanations."
|
144 |
-
history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]])
|
145 |
-
guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ')
|
146 |
-
tool_user_prompt = f"""User Query: "{user_input}"
|
147 |
-
|
148 |
-
Recent History:
|
149 |
-
{history_snippet}
|
150 |
-
|
151 |
-
Available Actions and their descriptions:
|
152 |
-
{tool_descriptions_for_prompt}
|
153 |
-
|
154 |
-
Based on the query and the action descriptions, select the single best action to take. Output the corresponding JSON.
|
155 |
-
Example for web search: {{"action": "search_duckduckgo_and_report", "action_input": {{"search_engine_query": "latest AI research"}}}}
|
156 |
-
Example for memory recall: {{"action": "answer_using_conversation_memory", "action_input": {{}}}}
|
157 |
-
"""
|
158 |
-
tool_decision_messages = [{"role":"system", "content": tool_sys_prompt}, {"role":"user", "content": tool_user_prompt}]
|
159 |
tool_provider, tool_model_id = TOOL_DECISION_PROVIDER_ENV, TOOL_DECISION_MODEL_ID_ENV
|
160 |
tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(tool_provider.lower(), {}).get("models", {}).items() if mid == tool_model_id), None)
|
161 |
if not tool_model_display: tool_model_display = get_default_model_display_name_for_provider(tool_provider)
|
162 |
-
if tool_model_display:
|
163 |
-
try:
|
164 |
-
logger.info(f"PUI_GRADIO [{request_id}]: Tool decision LLM: {tool_provider}/{tool_model_display}")
|
165 |
-
tool_resp_chunks = list(call_model_stream(provider=tool_provider, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=200))
|
166 |
-
tool_resp_raw = "".join(tool_resp_chunks).strip()
|
167 |
-
json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL)
|
168 |
-
if json_match_tool:
|
169 |
-
action_data = json.loads(json_match_tool.group(0))
|
170 |
-
action_type = action_data.get("action", "quick_respond")
|
171 |
-
action_input_dict = action_data.get("action_input", {})
|
172 |
-
if not isinstance(action_input_dict, dict): action_input_dict = {}
|
173 |
-
logger.info(f"PUI_GRADIO [{request_id}]: LLM Tool Decision: Action='{action_type}', Input='{action_input_dict}'")
|
174 |
-
else:
|
175 |
-
logger.warning(f"PUI_GRADIO [{request_id}]: Tool decision LLM non-JSON. Defaulting to quick_respond. Raw: {tool_resp_raw}")
|
176 |
-
action_type = "quick_respond"
|
177 |
-
except Exception as e:
|
178 |
-
logger.error(f"PUI_GRADIO [{request_id}]: Tool decision LLM error. Defaulting to quick_respond: {e}", exc_info=False)
|
179 |
-
action_type = "quick_respond"
|
180 |
-
else:
|
181 |
-
logger.error(f"No model for tool decision provider {tool_provider}. Defaulting to quick_respond.")
|
182 |
-
action_type = "quick_respond"
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
yield "status", f"<i>[Path: {action_type}. Preparing response...]</i>"
|
186 |
-
final_system_prompt_str
|
187 |
-
|
188 |
-
if action_type == "quick_respond":
|
189 |
-
final_system_prompt_str += " Respond directly using guidelines & history."
|
190 |
-
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nQuery: \"{user_input}\"\nResponse:"
|
191 |
|
192 |
-
|
193 |
-
yield "status", "<i>[Optimizing query for
|
194 |
-
|
195 |
optimized_query = user_input
|
196 |
try:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
logger.info(f"PUI_GRADIO [{request_id}]: Original query: '{user_input}'. Optimized memory search query: '{optimized_query}'")
|
207 |
-
else:
|
208 |
-
logger.warning(f"PUI_GRADIO [{request_id}]: Query generation returned empty. Using original input.")
|
209 |
-
except Exception as e:
|
210 |
-
logger.error(f"PUI_GRADIO [{request_id}]: Error during query generation: {e}. Using original input.")
|
211 |
-
|
212 |
-
yield "status", f"<i>[Searching all memories with query: '{optimized_query[:40]}...']</i>"
|
213 |
-
retrieved_mems = retrieve_memories_semantic(optimized_query, k=3)
|
214 |
|
|
|
|
|
|
|
|
|
215 |
if retrieved_mems:
|
216 |
-
|
217 |
-
memory_context = "Relevant Past Interactions (for your context only, do not repeat verbatim):\n" + "\n".join([f"- User asked: '{m.get('user_input','')}'. You responded: '{m.get('bot_response','')}'. (Key takeaway: {m.get('metrics',{}).get('takeaway','N/A')})" for m in retrieved_mems])
|
218 |
-
else:
|
219 |
-
logger.info(f"PUI_GRADIO [{request_id}]: No relevant memories found for the query.")
|
220 |
-
memory_context = "No relevant past interactions were found in the memory database."
|
221 |
|
222 |
-
final_system_prompt_str += " You MUST use the
|
223 |
-
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\n\nGuidelines:\n{
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
if action_type == "search_duckduckgo_and_report": web_results = search_and_scrape_duckduckgo(query_or_url, num_results=max_results)
|
235 |
-
elif action_type == "scrape_url_and_report":
|
236 |
-
res = scrape_url(query_or_url)
|
237 |
-
if res and (res.get("content") or res.get("error")): web_results = [res]
|
238 |
-
except Exception as e: web_results = [{"url": query_or_url, "title": "Tool Error", "error": str(e)}]
|
239 |
-
scraped_content = "\n".join([f"Source {i+1}:\nURL:{r.get('url','N/A')}\nTitle:{r.get('title','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:3500]}\n---" for i,r in enumerate(web_results)]) if web_results else f"No results from {action_type} for '{query_or_url}'."
|
240 |
-
yield "status", "<i>[Synthesizing web report...]</i>"
|
241 |
-
final_system_prompt_str += " Generate report/answer from web content, history, & guidelines. Cite URLs as [Source X]."
|
242 |
-
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nWeb Content:\n{scraped_content}\nQuery: \"{user_input}\"\nReport/Response (cite sources [Source X]):"
|
243 |
-
else: # Fallback for unknown action
|
244 |
-
final_system_prompt_str += " Respond directly (unknown action path)."
|
245 |
-
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nQuery: \"{user_input}\"\nResponse:"
|
246 |
|
247 |
final_llm_messages = [{"role": "system", "content": final_system_prompt_str}, {"role": "user", "content": final_user_prompt_content_str}]
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
streamed_response += chunk; yield "response_chunk", chunk
|
255 |
-
except Exception as e: streamed_response += f"\n\n(Error: {str(e)[:150]})"; yield "response_chunk", f"\n\n(Error: {str(e)[:150]})"
|
256 |
-
logger.info(f"PUI_GRADIO [{request_id}]: Main LLM stream took {time.time() - time_before_llm:.3f}s.")
|
257 |
-
final_bot_text = streamed_response.strip() or "(No response or error.)"
|
258 |
-
logger.info(f"PUI_GRADIO [{request_id}]: Finished. Total: {time.time() - process_start_time:.2f}s. Resp len: {len(final_bot_text)}")
|
259 |
yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list}
|
260 |
|
261 |
-
# The rest of the app.py file is unchanged and correct.
|
262 |
-
# ... (perform_post_interaction_learning, handle_gradio_chat_submit, UI definitions, etc.)
|
263 |
def perform_post_interaction_learning(user_input: str, bot_response: str, provider: str, model_disp_name: str, insights_reflected: list[dict], api_key_override: str = None):
|
264 |
task_id = os.urandom(4).hex()
|
265 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: START
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Metrics: {metrics}")
|
272 |
-
add_memory_entry(user_input, metrics, bot_response)
|
273 |
-
|
274 |
-
summary = f"User:\"{user_input}\"\nAI:\"{bot_response}\"\nMetrics(takeaway):{metrics.get('takeaway','N/A')},Success:{metrics.get('response_success_score','N/A')}"
|
275 |
-
existing_rules_ctx = "\n".join([f"- \"{r}\"" for r in retrieve_rules_semantic(f"{summary}\n{user_input}", k=10)]) or "No existing rules context."
|
276 |
-
|
277 |
-
insight_sys_prompt = """You are an expert AI knowledge base curator. Your primary function is to meticulously analyze an interaction and update the AI's guiding principles (insights/rules) to improve its future performance and self-understanding.
|
278 |
**CRITICAL OUTPUT REQUIREMENT: You MUST output a single, valid XML structure representing a list of operation objects.**
|
279 |
The root element should be `<operations_list>`. Each operation should be an `<operation>` element.
|
280 |
If no operations are warranted, output an empty list: `<operations_list></operations_list>`.
|
@@ -283,181 +191,63 @@ Each `<operation>` element must contain the following child elements:
|
|
283 |
1. `<action>`: A string, either `"add"` (for entirely new rules) or `"update"` (to replace an existing rule with a better one).
|
284 |
2. `<insight>`: The full, refined insight text including its `[TYPE|SCORE]` prefix (e.g., `[CORE_RULE|1.0] My name is Lumina, an AI assistant.`). Multi-line insight text can be placed directly within this tag; XML handles newlines naturally.
|
285 |
3. `<old_insight_to_replace>`: (ONLY for `"update"` action) The *exact, full text* of an existing insight that the new `<insight>` should replace. If action is `"add"`, this element should be omitted or empty.
|
286 |
-
**XML Structure Example:**
|
287 |
-
<operations_list>
|
288 |
-
<operation>
|
289 |
-
<action>update</action>
|
290 |
-
<insight>[CORE_RULE|1.0] I am Lumina, an AI assistant.
|
291 |
-
My purpose is to help with research.</insight>
|
292 |
-
<old_insight_to_replace>[CORE_RULE|0.9] My name is Assistant.</old_insight_to_replace>
|
293 |
-
</operation>
|
294 |
-
<operation>
|
295 |
-
<action>add</action>
|
296 |
-
<insight>[RESPONSE_PRINCIPLE|0.8] User prefers short answers.
|
297 |
-
Provide details only when asked.</insight>
|
298 |
-
</operation>
|
299 |
-
</operations_list>
|
300 |
-
**Your Reflection Process (Consider each step and generate operations accordingly):**
|
301 |
-
- **STEP 1: CORE IDENTITY/PURPOSE:** Review the interaction and existing rules. Identify if the interaction conflicts with, clarifies, or reinforces your core identity (name, fundamental nature, primary purpose). If necessary, propose updates or additions to CORE_RULEs. Aim for a single, consistent set of CORE_RULEs over time by updating older versions.
|
302 |
-
- **STEP 2: NEW LEARNINGS:** Based *only* on the "Interaction Summary", identify concrete, factual information, user preferences, or skills demonstrated that were not previously known or captured. These should be distinct, actionable learnings. Formulate these as new [GENERAL_LEARNING] or specific [BEHAVIORAL_ADJUSTMENT] rules. Do NOT add rules that are already covered by existing relevant rules.
|
303 |
-
- **STEP 3: REFINEMENT/ADJUSTMENT:** Review existing non-core rules ([RESPONSE_PRINCIPLE], [BEHAVIORAL_ADJUSTMENT], [GENERAL_LEARNING]) retrieved as "Potentially Relevant Existing Rules". Determine if the interaction indicates any of these rules need refinement, adjustment, or correction. Update existing rules if a better version exists.
|
304 |
-
**General Guidelines for Insight Content and Actions:**
|
305 |
-
- Ensure the `<insight>` field always contains the properly formatted insight string: `[TYPE|SCORE] Text`.
|
306 |
-
- Be precise with `<old_insight_to_replace>` – it must *exactly* match an existing rule string.
|
307 |
-
- Aim for a comprehensive set of operations.
|
308 |
"""
|
309 |
-
|
310 |
Potentially Relevant Existing Rules (Review these carefully. Your main goal is to consolidate CORE_RULEs and then identify other changes/additions based on the Interaction Summary and these existing rules):\n{existing_rules_ctx}\n
|
311 |
Guiding principles that were considered during THIS interaction (these might offer clues for new rules or refinements):\n{json.dumps([p['original'] for p in insights_reflected if 'original' in p]) if insights_reflected else "None"}\n
|
312 |
-
Task: Based on your
|
313 |
-
1. **Consolidate CORE_RULEs:** Merge similar identity/purpose rules
|
314 |
-
2. **Add New Learnings:**
|
315 |
-
3. **Update Existing Principles:** "
|
316 |
-
Combine all findings into a single, valid XML structure
|
317 |
"""
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
insight_text = insight_el.text.strip() if insight_el is not None and insight_el.text else None
|
346 |
-
old_insight_text = old_insight_el.text.strip() if old_insight_el is not None and old_insight_el.text else None
|
347 |
-
|
348 |
-
if action and insight_text:
|
349 |
-
ops_data_list.append({
|
350 |
-
"action": action,
|
351 |
-
"insight": insight_text,
|
352 |
-
"old_insight_to_replace": old_insight_text
|
353 |
-
})
|
354 |
-
else:
|
355 |
-
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Skipped XML operation due to missing action or insight text. Action: {action}, Insight: {insight_text}")
|
356 |
-
else:
|
357 |
-
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML root tag is not <operations_list>. Found: {root.tag}. XML content:\n{xml_content_str}")
|
358 |
-
except ET.ParseError as e:
|
359 |
-
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML parsing error: {e}. XML content that failed:\n{xml_content_str}")
|
360 |
-
except Exception as e_xml_proc:
|
361 |
-
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: Error processing parsed XML: {e_xml_proc}. XML content:\n{xml_content_str}")
|
362 |
-
else:
|
363 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No <operations_list> XML structure found in LLM output. Full raw output:\n{raw_ops_xml_full}")
|
364 |
-
|
365 |
-
if ops_data_list:
|
366 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: LLM provided {len(ops_data_list)} insight ops from XML.")
|
367 |
-
for op_idx, op_data in enumerate(ops_data_list):
|
368 |
-
action = op_data["action"]
|
369 |
-
insight_text = op_data["insight"]
|
370 |
-
old_insight = op_data["old_insight_to_replace"]
|
371 |
-
|
372 |
-
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", insight_text, re.I|re.DOTALL):
|
373 |
-
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to invalid insight_text format from XML: '{insight_text[:100]}...'")
|
374 |
-
continue
|
375 |
-
|
376 |
-
rule_added_or_updated = False
|
377 |
-
if action == "add":
|
378 |
-
success, status_msg = add_rule_entry(insight_text)
|
379 |
-
if success:
|
380 |
-
processed_count +=1
|
381 |
-
rule_added_or_updated = True
|
382 |
-
if insight_text.upper().startswith("[CORE_RULE"):
|
383 |
-
significant_learnings_summary.append(f"New Core Rule Added: {insight_text}")
|
384 |
-
else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (add from XML): Failed to add rule '{insight_text[:50]}...'. Status: {status_msg}")
|
385 |
-
elif action == "update":
|
386 |
-
removed_old = False
|
387 |
-
if old_insight:
|
388 |
-
if old_insight != insight_text:
|
389 |
-
remove_success = remove_rule_entry(old_insight)
|
390 |
-
if not remove_success:
|
391 |
-
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to remove old rule '{old_insight[:50]}...' before adding new.")
|
392 |
-
else:
|
393 |
-
removed_old = True
|
394 |
-
else:
|
395 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Old insight is identical to new insight. Skipping removal.")
|
396 |
-
|
397 |
-
success, status_msg = add_rule_entry(insight_text)
|
398 |
-
if success:
|
399 |
-
processed_count +=1
|
400 |
-
rule_added_or_updated = True
|
401 |
-
if insight_text.upper().startswith("[CORE_RULE"):
|
402 |
-
significant_learnings_summary.append(f"Core Rule Updated (Old: {'Removed' if removed_old else 'Not removed/Same'}, New: {insight_text})")
|
403 |
-
else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to add/update rule '{insight_text[:50]}...'. Status: {status_msg}")
|
404 |
-
else:
|
405 |
-
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to unknown action '{action}' from XML.")
|
406 |
-
|
407 |
-
# After processing all rules, if there were significant learnings, add a special memory
|
408 |
-
if significant_learnings_summary:
|
409 |
-
learning_digest = "SYSTEM CORE LEARNING DIGEST:\n" + "\n".join(significant_learnings_summary)
|
410 |
-
# Create a synthetic metrics object for this system memory
|
411 |
-
system_metrics = {
|
412 |
-
"takeaway": "Core knowledge refined.",
|
413 |
-
"response_success_score": 1.0, # Assuming successful internal update
|
414 |
-
"future_confidence_score": 1.0,
|
415 |
-
"type": "SYSTEM_REFLECTION"
|
416 |
-
}
|
417 |
-
add_memory_entry(
|
418 |
-
user_input="SYSTEM_INTERNAL_REFLECTION_TRIGGER", # Fixed identifier
|
419 |
-
metrics=system_metrics,
|
420 |
-
bot_response=learning_digest
|
421 |
-
)
|
422 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Added CORE_LEARNING_DIGEST to memories: {learning_digest[:100]}...")
|
423 |
-
|
424 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Processed {processed_count} insight ops out of {len(ops_data_list)} received from XML.")
|
425 |
-
else:
|
426 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No valid insight operations derived from LLM's XML output.")
|
427 |
-
|
428 |
-
except Exception as e: logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: CRITICAL ERROR in learning task: {e}", exc_info=True)
|
429 |
-
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: END. Total: {time.time() - learning_start_time:.2f}s")
|
430 |
-
|
431 |
|
432 |
def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
|
433 |
global current_chat_session_history
|
434 |
cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
|
435 |
-
|
436 |
-
|
437 |
-
updated_mems_json = ui_refresh_memories_display_fn() # Get current memories state
|
438 |
def_detect_out_md = gr.Markdown(visible=False)
|
439 |
-
def_fmt_out_txt = gr.Textbox(value="*Waiting...*", interactive=True
|
440 |
def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
|
441 |
|
442 |
if not user_msg_txt.strip():
|
443 |
-
|
444 |
-
updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
|
445 |
-
# Ensure all outputs are provided on early exit
|
446 |
-
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
447 |
return
|
448 |
|
449 |
updated_gr_hist.append((user_msg_txt, "<i>Thinking...</i>"))
|
450 |
-
# Initial yield to update chat UI with thinking message and show current knowledge base state
|
451 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
452 |
|
453 |
-
internal_hist = list(current_chat_session_history)
|
454 |
-
|
455 |
-
|
456 |
-
if internal_hist and internal_hist[0]["role"] == "system": hist_len_check +=1
|
457 |
-
if len(internal_hist) > hist_len_check:
|
458 |
-
current_chat_session_history = ([internal_hist[0]] if internal_hist[0]["role"] == "system" else []) + internal_hist[-(MAX_HISTORY_TURNS * 2):]
|
459 |
-
internal_hist = list(current_chat_session_history) # Use truncated history for current turn processing
|
460 |
-
|
461 |
final_bot_resp_acc, insights_used_parsed = "", []
|
462 |
temp_dl_file_path = None
|
463 |
|
@@ -468,719 +258,114 @@ def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_na
|
|
468 |
if upd_type == "status":
|
469 |
status_txt = upd_data
|
470 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
471 |
-
# Update the status alongside the streaming message
|
472 |
updated_gr_hist[-1] = (user_msg_txt, f"{curr_bot_disp_msg} <i>{status_txt}</i>" if curr_bot_disp_msg else f"<i>{status_txt}</i>")
|
473 |
elif upd_type == "response_chunk":
|
474 |
curr_bot_disp_msg += upd_data
|
475 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
476 |
-
updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg)
|
477 |
elif upd_type == "final_response_and_insights":
|
478 |
final_bot_resp_acc, insights_used_parsed = upd_data["response"], upd_data["insights_used"]
|
479 |
status_txt = "Response generated. Processing learning..."
|
480 |
-
# Ensure the final chat message reflects the full response
|
481 |
-
if not curr_bot_disp_msg and final_bot_resp_acc : curr_bot_disp_msg = final_bot_resp_acc
|
482 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
483 |
-
updated_gr_hist[-1] = (user_msg_txt,
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
except Exception as e:
|
495 |
-
logger.error(f"Error creating temp file for download: {e}", exc_info=False)
|
496 |
-
def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False, label="Download Error")
|
497 |
-
else:
|
498 |
-
def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
|
499 |
-
|
500 |
-
# Update insights display
|
501 |
-
insights_md_content = "### Insights Considered (Pre-Response):\n" + ("\n".join([f"- **[{i.get('type','N/A')}|{i.get('score','N/A')}]** {i.get('text','N/A')[:100]}..." for i in insights_used_parsed[:3]]) if insights_used_parsed else "*None specific.*")
|
502 |
-
def_detect_out_md = gr.Markdown(value=insights_md_content, visible=True if insights_used_parsed else False)
|
503 |
|
504 |
-
# Yield intermediate updates for the UI
|
505 |
-
# Pass the *current* state of rules and memories display components
|
506 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
507 |
-
|
508 |
-
# Stop processing generator after final_response_and_insights
|
509 |
if upd_type == "final_response_and_insights": break
|
510 |
-
|
511 |
except Exception as e:
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
else:
|
517 |
-
updated_gr_hist.append((user_msg_txt, error_message_for_chat))
|
518 |
-
def_fmt_out_txt = gr.Textbox(value=error_message_for_chat, interactive=True)
|
519 |
-
def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
|
520 |
-
def_detect_out_md = gr.Markdown(value="*Error processing request.*", visible=True)
|
521 |
-
|
522 |
-
# Provide the current state of rules/memories on error path yield
|
523 |
-
current_rules_text_on_error = ui_refresh_rules_display_fn()
|
524 |
-
current_mems_json_on_error = ui_refresh_memories_display_fn()
|
525 |
-
|
526 |
-
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, current_rules_text_on_error, current_mems_json_on_error)
|
527 |
-
# Clean up temp file if created before error
|
528 |
-
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
|
529 |
-
try: os.unlink(temp_dl_file_path)
|
530 |
-
except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path} after error: {e_unlink}")
|
531 |
-
return # Exit the function after error handling
|
532 |
|
533 |
-
# --- Post-Interaction Learning ---
|
534 |
if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
|
535 |
-
# Add the successful turn to the internal history
|
536 |
current_chat_session_history.extend([{"role": "user", "content": user_msg_txt}, {"role": "assistant", "content": final_bot_resp_acc}])
|
537 |
-
|
538 |
-
|
539 |
-
if current_chat_session_history and current_chat_session_history[0]["role"] == "system": hist_len_check +=1
|
540 |
-
if len(current_chat_session_history) > hist_len_check:
|
541 |
-
current_chat_session_history = ([current_chat_session_history[0]] if current_chat_session_history[0]["role"] == "system" else []) + current_chat_session_history[-(MAX_HISTORY_TURNS * 2):]
|
542 |
-
|
543 |
-
status_txt = "<i>[Performing post-interaction learning...]</i>"
|
544 |
-
# Yield status before synchronous learning
|
545 |
-
current_rules_text_before_learn = ui_refresh_rules_display_fn()
|
546 |
-
current_mems_json_before_learn = ui_refresh_memories_display_fn()
|
547 |
-
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, current_rules_text_before_learn, current_mems_json_before_learn)
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
provider=sel_prov_name,
|
554 |
-
model_disp_name=sel_model_disp_name,
|
555 |
-
insights_reflected=insights_used_parsed,
|
556 |
-
api_key_override=ui_api_key.strip() if ui_api_key else None
|
557 |
-
)
|
558 |
-
status_txt = "Response & Learning Complete."
|
559 |
-
except Exception as e_learn:
|
560 |
-
logger.error(f"Error during post-interaction learning: {e_learn}", exc_info=True)
|
561 |
-
status_txt = "Response complete. Error during learning."
|
562 |
-
|
563 |
-
elif final_bot_resp_acc.startswith("Error:"):
|
564 |
-
status_txt = final_bot_resp_acc
|
565 |
-
# If it was an error response from the generator, it's already in updated_gr_hist[-1]
|
566 |
-
# The other output components (fmt_report_tb, dl_btn, detect_out_md) are already set by the generator loop or default state
|
567 |
-
else:
|
568 |
-
status_txt = "Processing finished; no valid response or error occurred during main phase."
|
569 |
-
|
570 |
-
|
571 |
-
# Final yield after learning (or error handling)
|
572 |
-
# This final yield updates the UI one last time with the true final status
|
573 |
-
# AND crucially refreshes the Rules and Memories displays in case they changed during learning.
|
574 |
updated_rules_text = ui_refresh_rules_display_fn()
|
575 |
updated_mems_json = ui_refresh_memories_display_fn()
|
576 |
-
|
577 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
578 |
-
|
579 |
-
# Clean up the temporary download file after the final yield
|
580 |
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
|
581 |
try: os.unlink(temp_dl_file_path)
|
582 |
-
except
|
583 |
-
|
584 |
-
|
585 |
-
# --- Startup Loading Functions ---
|
586 |
-
def load_rules_from_file(filepath: str | None):
|
587 |
-
"""Loads rules from a local file (.txt or .jsonl) and adds them to the system."""
|
588 |
-
if not filepath:
|
589 |
-
logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.")
|
590 |
-
return 0, 0, 0 # added, skipped, errors
|
591 |
-
|
592 |
-
if not os.path.exists(filepath):
|
593 |
-
logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.")
|
594 |
-
return 0, 0, 0
|
595 |
-
|
596 |
-
added_count, skipped_count, error_count = 0, 0, 0
|
597 |
-
potential_rules = []
|
598 |
-
|
599 |
-
try:
|
600 |
-
with open(filepath, 'r', encoding='utf-8') as f:
|
601 |
-
content = f.read()
|
602 |
-
except Exception as e:
|
603 |
-
logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False)
|
604 |
-
return 0, 0, 1 # Indicate read error
|
605 |
-
|
606 |
-
if not content.strip():
|
607 |
-
logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.")
|
608 |
-
return 0, 0, 0
|
609 |
-
|
610 |
-
file_name_lower = filepath.lower()
|
611 |
-
|
612 |
-
if file_name_lower.endswith(".txt"):
|
613 |
-
potential_rules = content.split("\n\n---\n\n")
|
614 |
-
# Also handle simple line breaks if '---' separator is not used
|
615 |
-
if len(potential_rules) == 1 and "\n" in content:
|
616 |
-
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
|
617 |
-
elif file_name_lower.endswith(".jsonl"):
|
618 |
-
for line_num, line in enumerate(content.splitlines()):
|
619 |
-
line = line.strip()
|
620 |
-
if line:
|
621 |
-
try:
|
622 |
-
# Expecting each line to be a JSON string containing the rule text
|
623 |
-
rule_text_in_json_string = json.loads(line)
|
624 |
-
if isinstance(rule_text_in_json_string, str):
|
625 |
-
potential_rules.append(rule_text_in_json_string)
|
626 |
-
else:
|
627 |
-
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}")
|
628 |
-
error_count +=1
|
629 |
-
except json.JSONDecodeError:
|
630 |
-
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}")
|
631 |
-
error_count +=1
|
632 |
-
else:
|
633 |
-
logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl")
|
634 |
-
return 0, 0, 1 # Indicate type error
|
635 |
|
636 |
-
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
|
637 |
-
total_to_process = len(valid_potential_rules)
|
638 |
-
|
639 |
-
if total_to_process == 0 and error_count == 0:
|
640 |
-
logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.")
|
641 |
-
return 0, 0, 0
|
642 |
-
elif total_to_process == 0 and error_count > 0:
|
643 |
-
logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.")
|
644 |
-
return 0, 0, error_count # Indicate only errors
|
645 |
-
|
646 |
-
logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...")
|
647 |
-
for idx, rule_text in enumerate(valid_potential_rules):
|
648 |
-
success, status_msg = add_rule_entry(rule_text)
|
649 |
-
if success:
|
650 |
-
added_count += 1
|
651 |
-
elif status_msg == "duplicate":
|
652 |
-
skipped_count += 1
|
653 |
-
else:
|
654 |
-
logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}")
|
655 |
-
error_count += 1
|
656 |
-
|
657 |
-
logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.")
|
658 |
-
return added_count, skipped_count, error_count
|
659 |
-
|
660 |
-
def load_memories_from_file(filepath: str | None):
|
661 |
-
"""Loads memories from a local file (.json or .jsonl) and adds them to the system."""
|
662 |
-
if not filepath:
|
663 |
-
logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.")
|
664 |
-
return 0, 0, 0 # added, format_errors, save_errors
|
665 |
-
|
666 |
-
if not os.path.exists(filepath):
|
667 |
-
logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.")
|
668 |
-
return 0, 0, 0
|
669 |
-
|
670 |
-
added_count, format_error_count, save_error_count = 0, 0, 0
|
671 |
-
memory_objects_to_process = []
|
672 |
-
|
673 |
-
try:
|
674 |
-
with open(filepath, 'r', encoding='utf-8') as f:
|
675 |
-
content = f.read()
|
676 |
-
except Exception as e:
|
677 |
-
logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False)
|
678 |
-
return 0, 1, 0 # Indicate read error
|
679 |
-
|
680 |
-
if not content.strip():
|
681 |
-
logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.")
|
682 |
-
return 0, 0, 0
|
683 |
-
|
684 |
-
file_ext = os.path.splitext(filepath.lower())[1]
|
685 |
-
|
686 |
-
if file_ext == ".json":
|
687 |
-
try:
|
688 |
-
parsed_json = json.loads(content)
|
689 |
-
if isinstance(parsed_json, list):
|
690 |
-
memory_objects_to_process = parsed_json
|
691 |
-
elif isinstance(parsed_json, dict):
|
692 |
-
# If it's a single object, process it as a list of one
|
693 |
-
memory_objects_to_process = [parsed_json]
|
694 |
-
else:
|
695 |
-
logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}")
|
696 |
-
format_error_count = 1
|
697 |
-
except json.JSONDecodeError as e:
|
698 |
-
logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}")
|
699 |
-
format_error_count = 1
|
700 |
-
elif file_ext == ".jsonl":
|
701 |
-
for line_num, line in enumerate(content.splitlines()):
|
702 |
-
line = line.strip()
|
703 |
-
if line:
|
704 |
-
try:
|
705 |
-
memory_objects_to_process.append(json.loads(line))
|
706 |
-
except json.JSONDecodeError:
|
707 |
-
logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}")
|
708 |
-
format_error_count += 1
|
709 |
-
else:
|
710 |
-
logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl")
|
711 |
-
return 0, 1, 0 # Indicate type error
|
712 |
-
|
713 |
-
total_to_process = len(memory_objects_to_process)
|
714 |
-
|
715 |
-
if total_to_process == 0 and format_error_count > 0 :
|
716 |
-
logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.")
|
717 |
-
return 0, format_error_count, 0
|
718 |
-
elif total_to_process == 0:
|
719 |
-
logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.")
|
720 |
-
return 0, 0, 0
|
721 |
-
|
722 |
-
|
723 |
-
logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...")
|
724 |
-
for idx, mem_data in enumerate(memory_objects_to_process):
|
725 |
-
# Validate minimum structure
|
726 |
-
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
|
727 |
-
# Add entry without generating new embeddings if possible (assuming file contains embeddings)
|
728 |
-
# NOTE: The current add_memory_entry function *always* generates embeddings.
|
729 |
-
# If performance is an issue with large files, memory_logic might need
|
730 |
-
# an optimized bulk import function that reuses existing embeddings or
|
731 |
-
# generates them in batches. For now, we use the existing function.
|
732 |
-
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"]) # add_memory_entry needs user_input, metrics, bot_response
|
733 |
-
if success:
|
734 |
-
added_count += 1
|
735 |
-
else:
|
736 |
-
# add_memory_entry currently doesn't return detailed error status
|
737 |
-
logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}")
|
738 |
-
save_error_count += 1
|
739 |
-
else:
|
740 |
-
logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}")
|
741 |
-
format_error_count += 1
|
742 |
-
|
743 |
-
logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.")
|
744 |
-
return added_count, format_error_count, save_error_count
|
745 |
-
|
746 |
-
|
747 |
-
# --- UI Functions for Rules and Memories (ui_refresh_..., ui_download_..., ui_upload_...) ---
|
748 |
def ui_refresh_rules_display_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
|
749 |
-
|
750 |
-
def ui_download_rules_action_fn():
|
751 |
-
rules_content = "\n\n---\n\n".join(get_all_rules_cached())
|
752 |
-
if not rules_content.strip():
|
753 |
-
gr.Warning("No rules to download.")
|
754 |
-
return gr.DownloadButton(value=None, interactive=False, label="No Rules")
|
755 |
-
try:
|
756 |
-
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt", encoding='utf-8') as tmpfile:
|
757 |
-
tmpfile.write(rules_content)
|
758 |
-
return tmpfile.name
|
759 |
-
except Exception as e:
|
760 |
-
logger.error(f"Error creating rules download file: {e}")
|
761 |
-
gr.Error(f"Failed to prepare rules for download: {e}")
|
762 |
-
return gr.DownloadButton(value=None, interactive=False, label="Error")
|
763 |
-
|
764 |
-
def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
|
765 |
-
if not uploaded_file_obj: return "No file provided for rules upload."
|
766 |
-
try:
|
767 |
-
with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
|
768 |
-
except Exception as e_read: return f"Error reading file: {e_read}"
|
769 |
-
if not content.strip(): return "Uploaded rules file is empty."
|
770 |
-
added_count, skipped_count, error_count = 0,0,0
|
771 |
-
|
772 |
-
potential_rules = []
|
773 |
-
file_name_lower = uploaded_file_obj.name.lower()
|
774 |
-
|
775 |
-
if file_name_lower.endswith(".txt"):
|
776 |
-
potential_rules = content.split("\n\n---\n\n")
|
777 |
-
if len(potential_rules) == 1 and "\n" in content:
|
778 |
-
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
|
779 |
-
elif file_name_lower.endswith(".jsonl"):
|
780 |
-
for line_num, line in enumerate(content.splitlines()):
|
781 |
-
line = line.strip()
|
782 |
-
if line:
|
783 |
-
try:
|
784 |
-
rule_text_in_json_string = json.loads(line)
|
785 |
-
if isinstance(rule_text_in_json_string, str):
|
786 |
-
potential_rules.append(rule_text_in_json_string)
|
787 |
-
else:
|
788 |
-
logger.warning(f"Rule Upload (JSONL): Line {line_num+1} did not contain a string value. Got: {type(rule_text_in_json_string)}")
|
789 |
-
error_count +=1
|
790 |
-
except json.JSONDecodeError:
|
791 |
-
logger.warning(f"Rule Upload (JSONL): Line {line_num+1} failed to parse as JSON: {line[:100]}")
|
792 |
-
error_count +=1
|
793 |
-
else:
|
794 |
-
return "Unsupported file type for rules. Please use .txt or .jsonl."
|
795 |
-
|
796 |
-
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
|
797 |
-
total_to_process = len(valid_potential_rules)
|
798 |
-
|
799 |
-
if total_to_process == 0 and error_count == 0:
|
800 |
-
return "No valid rules found in file to process."
|
801 |
-
elif total_to_process == 0 and error_count > 0:
|
802 |
-
return f"No valid rules found to process. Encountered {error_count} parsing/format errors."
|
803 |
-
|
804 |
-
progress(0, desc="Starting rules upload...")
|
805 |
-
for idx, rule_text in enumerate(valid_potential_rules):
|
806 |
-
success, status_msg = add_rule_entry(rule_text)
|
807 |
-
if success: added_count += 1
|
808 |
-
elif status_msg == "duplicate": skipped_count += 1
|
809 |
-
else: error_count += 1
|
810 |
-
progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} rules...")
|
811 |
-
|
812 |
-
msg = f"Rules Upload: Total valid rule segments processed: {total_to_process}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors (parsing/add): {error_count}."
|
813 |
-
logger.info(msg); return msg
|
814 |
-
|
815 |
def ui_refresh_memories_display_fn(): return get_all_memories_cached() or []
|
816 |
|
817 |
-
def ui_download_memories_action_fn():
|
818 |
-
memories = get_all_memories_cached()
|
819 |
-
if not memories:
|
820 |
-
gr.Warning("No memories to download.")
|
821 |
-
return gr.DownloadButton(value=None, interactive=False, label="No Memories")
|
822 |
-
|
823 |
-
jsonl_content = ""
|
824 |
-
for mem_dict in memories:
|
825 |
-
try: jsonl_content += json.dumps(mem_dict) + "\n"
|
826 |
-
except Exception as e: logger.error(f"Error serializing memory for download: {mem_dict}, Error: {e}")
|
827 |
-
|
828 |
-
if not jsonl_content.strip():
|
829 |
-
gr.Warning("No valid memories to serialize for download.")
|
830 |
-
return gr.DownloadButton(value=None, interactive=False, label="No Data")
|
831 |
-
try:
|
832 |
-
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".jsonl", encoding='utf-8') as tmpfile:
|
833 |
-
tmpfile.write(jsonl_content)
|
834 |
-
return tmpfile.name
|
835 |
-
except Exception as e:
|
836 |
-
logger.error(f"Error creating memories download file: {e}")
|
837 |
-
gr.Error(f"Failed to prepare memories for download: {e}")
|
838 |
-
return gr.DownloadButton(value=None, interactive=False, label="Error")
|
839 |
-
|
840 |
-
def ui_upload_memories_action_fn(uploaded_file_obj, progress=gr.Progress()):
|
841 |
-
if not uploaded_file_obj: return "No file provided for memories upload."
|
842 |
-
try:
|
843 |
-
with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
|
844 |
-
except Exception as e_read: return f"Error reading file: {e_read}"
|
845 |
-
if not content.strip(): return "Uploaded memories file is empty."
|
846 |
-
added_count, format_error_count, save_error_count = 0,0,0
|
847 |
-
memory_objects_to_process = []
|
848 |
-
|
849 |
-
file_ext = os.path.splitext(uploaded_file_obj.name.lower())[1]
|
850 |
-
|
851 |
-
if file_ext == ".json":
|
852 |
-
try:
|
853 |
-
parsed_json = json.loads(content)
|
854 |
-
if isinstance(parsed_json, list):
|
855 |
-
memory_objects_to_process = parsed_json
|
856 |
-
elif isinstance(parsed_json, dict):
|
857 |
-
memory_objects_to_process = [parsed_json]
|
858 |
-
else:
|
859 |
-
logger.warning(f"Memories Upload (.json): File content is not a JSON list or object. Type: {type(parsed_json)}")
|
860 |
-
format_error_count = 1
|
861 |
-
except json.JSONDecodeError as e:
|
862 |
-
logger.warning(f"Memories Upload (.json): Invalid JSON file. Error: {e}")
|
863 |
-
format_error_count = 1
|
864 |
-
elif file_ext == ".jsonl":
|
865 |
-
for line_num, line in enumerate(content.splitlines()):
|
866 |
-
line = line.strip()
|
867 |
-
if line:
|
868 |
-
try:
|
869 |
-
memory_objects_to_process.append(json.loads(line))
|
870 |
-
except json.JSONDecodeError:
|
871 |
-
logger.warning(f"Memories Upload (.jsonl): Line {line_num+1} parse error: {line[:100]}")
|
872 |
-
format_error_count += 1
|
873 |
-
else:
|
874 |
-
return "Unsupported file type for memories. Please use .json or .jsonl."
|
875 |
-
|
876 |
-
if not memory_objects_to_process and format_error_count > 0 :
|
877 |
-
return f"Memories Upload: File parsing failed. Found {format_error_count} format errors and no processable objects."
|
878 |
-
elif not memory_objects_to_process:
|
879 |
-
return "No valid memory objects found in the uploaded file."
|
880 |
-
|
881 |
-
total_to_process = len(memory_objects_to_process)
|
882 |
-
if total_to_process == 0: return "No memory objects to process (after parsing)."
|
883 |
-
|
884 |
-
progress(0, desc="Starting memories upload...")
|
885 |
-
for idx, mem_data in enumerate(memory_objects_to_process):
|
886 |
-
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
|
887 |
-
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
|
888 |
-
if success: added_count += 1
|
889 |
-
else: save_error_count += 1
|
890 |
-
else:
|
891 |
-
logger.warning(f"Memories Upload: Skipped invalid memory object structure: {str(mem_data)[:100]}")
|
892 |
-
format_error_count += 1
|
893 |
-
progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} memories...")
|
894 |
-
|
895 |
-
msg = f"Memories Upload: Processed {total_to_process} objects. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}."
|
896 |
-
logger.info(msg); return msg
|
897 |
-
|
898 |
-
def save_edited_rules_action_fn(edited_rules_text: str, progress=gr.Progress()):
|
899 |
-
if not edited_rules_text.strip():
|
900 |
-
return "No rules text to save."
|
901 |
-
|
902 |
-
potential_rules = edited_rules_text.split("\n\n---\n\n")
|
903 |
-
if len(potential_rules) == 1 and "\n" in edited_rules_text:
|
904 |
-
potential_rules = [r.strip() for r in edited_rules_text.splitlines() if r.strip()]
|
905 |
-
|
906 |
-
if not potential_rules:
|
907 |
-
return "No rules found to process from editor."
|
908 |
-
|
909 |
-
added, skipped, errors = 0, 0, 0
|
910 |
-
unique_rules_to_process = sorted(list(set(filter(None, [r.strip() for r in potential_rules]))))
|
911 |
-
|
912 |
-
total_unique = len(unique_rules_to_process)
|
913 |
-
if total_unique == 0: return "No unique, non-empty rules found in editor text."
|
914 |
-
|
915 |
-
progress(0, desc=f"Saving {total_unique} unique rules from editor...")
|
916 |
-
|
917 |
-
for idx, rule_text in enumerate(unique_rules_to_process):
|
918 |
-
success, status_msg = add_rule_entry(rule_text)
|
919 |
-
if success: added += 1
|
920 |
-
elif status_msg == "duplicate": skipped += 1
|
921 |
-
else: errors += 1
|
922 |
-
progress((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...")
|
923 |
-
|
924 |
-
return f"Editor Save: Added: {added}, Skipped (duplicates): {skipped}, Errors/Invalid: {errors} from {total_unique} unique rules in text."
|
925 |
-
|
926 |
def app_load_fn():
|
927 |
-
logger.info("App loading. Initializing systems...")
|
928 |
initialize_memory_system()
|
929 |
-
|
930 |
-
|
931 |
-
# --- Load Rules from File ---
|
932 |
-
rules_added, rules_skipped, rules_errors = load_rules_from_file(LOAD_RULES_FILE)
|
933 |
-
rules_load_msg = f"Rules: Added {rules_added}, Skipped {rules_skipped}, Errors {rules_errors} from {LOAD_RULES_FILE or 'None'}."
|
934 |
-
logger.info(rules_load_msg)
|
935 |
-
|
936 |
-
# --- Load Memories from File ---
|
937 |
-
mems_added, mems_format_errors, mems_save_errors = load_memories_from_file(LOAD_MEMORIES_FILE)
|
938 |
-
mems_load_msg = f"Memories: Added {mems_added}, Format Errors {mems_format_errors}, Save Errors {mems_save_errors} from {LOAD_MEMORIES_FILE or 'None'}."
|
939 |
-
logger.info(mems_load_msg)
|
940 |
-
|
941 |
-
final_status = f"AI Systems Initialized. {rules_load_msg} {mems_load_msg} Ready."
|
942 |
-
|
943 |
-
# Initial population of all relevant UI components AFTER loading
|
944 |
-
rules_on_load = ui_refresh_rules_display_fn()
|
945 |
-
mems_on_load = ui_refresh_memories_display_fn()
|
946 |
-
|
947 |
-
# Return values for outputs defined in demo.load
|
948 |
-
return (
|
949 |
-
final_status, # agent_stat_tb
|
950 |
-
rules_on_load, # rules_disp_ta
|
951 |
-
mems_on_load, # mems_disp_json
|
952 |
-
gr.Markdown(visible=False), # detect_out_md (initial state)
|
953 |
-
gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True), # fmt_report_tb (initial state)
|
954 |
-
gr.DownloadButton(interactive=False, value=None, visible=False), # dl_report_btn (initial state)
|
955 |
-
)
|
956 |
-
|
957 |
-
|
958 |
-
# --- Gradio UI Definition ---
|
959 |
-
with gr.Blocks(
|
960 |
-
theme=gr.themes.Soft(),
|
961 |
-
css="""
|
962 |
-
.gr-button { margin: 5px; }
|
963 |
-
.gr-textbox, .gr-text-area, .gr-dropdown, .gr-json { border-radius: 8px; }
|
964 |
-
.gr-group { border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; }
|
965 |
-
.gr-row { gap: 10px; }
|
966 |
-
.gr-tab { border-radius: 8px; }
|
967 |
-
.status-text { font-size: 0.9em; color: #555; }
|
968 |
-
.gr-json { max-height: 300px; overflow-y: auto; } /* Added scrolling for JSON */
|
969 |
-
"""
|
970 |
-
) as demo:
|
971 |
-
gr.Markdown(
|
972 |
-
"""
|
973 |
-
# 🤖 AI Research Agent
|
974 |
-
Your intelligent assistant for research and knowledge management
|
975 |
-
""",
|
976 |
-
elem_classes=["header"]
|
977 |
-
)
|
978 |
-
|
979 |
-
is_sqlite = MEMORY_STORAGE_BACKEND == "SQLITE"
|
980 |
-
is_hf_dataset = MEMORY_STORAGE_BACKEND == "HF_DATASET"
|
981 |
|
|
|
|
|
982 |
with gr.Row(variant="compact"):
|
983 |
-
agent_stat_tb = gr.Textbox(
|
984 |
-
label="Agent Status", value="Initializing systems...", interactive=False,
|
985 |
-
elem_classes=["status-text"], scale=4
|
986 |
-
)
|
987 |
with gr.Column(scale=1, min_width=150):
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
)
|
992 |
-
sqlite_path_display = gr.Textbox(
|
993 |
-
label="SQLite Path", value=MEMORY_SQLITE_PATH, interactive=False,
|
994 |
-
visible=is_sqlite, elem_classes=["status-text"]
|
995 |
-
)
|
996 |
-
hf_repos_display = gr.Textbox(
|
997 |
-
label="HF Repos", value=f"M: {MEMORY_HF_MEM_REPO}, R: {MEMORY_HF_RULES_REPO}",
|
998 |
-
interactive=False, visible=is_hf_dataset, elem_classes=["status-text"]
|
999 |
-
)
|
1000 |
-
|
1001 |
with gr.Row():
|
1002 |
with gr.Sidebar():
|
1003 |
gr.Markdown("## ⚙️ Configuration")
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
available_providers = get_available_providers()
|
1010 |
-
default_provider = available_providers[0] if available_providers else None
|
1011 |
-
prov_sel_dd = gr.Dropdown(
|
1012 |
-
label="AI Provider", choices=available_providers,
|
1013 |
-
value=default_provider, interactive=True
|
1014 |
-
)
|
1015 |
-
default_model_display = get_default_model_display_name_for_provider(default_provider) if default_provider else None
|
1016 |
-
model_sel_dd = gr.Dropdown(
|
1017 |
-
label="AI Model",
|
1018 |
-
choices=get_model_display_names_for_provider(default_provider) if default_provider else [],
|
1019 |
-
value=default_model_display,
|
1020 |
-
interactive=True
|
1021 |
-
)
|
1022 |
-
with gr.Group():
|
1023 |
-
gr.Markdown("### System Prompt")
|
1024 |
-
sys_prompt_tb = gr.Textbox(
|
1025 |
-
label="System Prompt Base", lines=8, value=DEFAULT_SYSTEM_PROMPT, interactive=True
|
1026 |
-
)
|
1027 |
-
if MEMORY_STORAGE_BACKEND == "RAM":
|
1028 |
-
save_faiss_sidebar_btn = gr.Button("Save FAISS Indices", variant="secondary")
|
1029 |
-
|
1030 |
with gr.Column(scale=3):
|
1031 |
with gr.Tabs():
|
1032 |
with gr.TabItem("💬 Chat & Research"):
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
)
|
1040 |
-
with gr.Row(variant="compact"):
|
1041 |
-
user_msg_tb = gr.Textbox(
|
1042 |
-
show_label=False, placeholder="Ask your research question...",
|
1043 |
-
scale=7, lines=1, max_lines=3
|
1044 |
-
)
|
1045 |
-
send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
|
1046 |
-
with gr.Accordion("📝 Detailed Response & Insights", open=False):
|
1047 |
-
fmt_report_tb = gr.Textbox(
|
1048 |
-
label="Full AI Response", lines=8, interactive=True, show_copy_button=True
|
1049 |
-
)
|
1050 |
-
dl_report_btn = gr.DownloadButton(
|
1051 |
-
"Download Report", value=None, interactive=False, visible=False
|
1052 |
-
)
|
1053 |
-
detect_out_md = gr.Markdown(visible=False)
|
1054 |
-
|
1055 |
with gr.TabItem("🧠 Knowledge Base"):
|
1056 |
-
with gr.Row(
|
1057 |
with gr.Column():
|
1058 |
-
gr.
|
1059 |
-
rules_disp_ta = gr.TextArea(
|
1060 |
-
label="Current Rules", lines=10,
|
1061 |
-
placeholder="Rules will appear here.",
|
1062 |
-
interactive=True
|
1063 |
-
)
|
1064 |
-
gr.Markdown("To edit rules, modify the text above and click 'Save Edited Text', or upload a new file.")
|
1065 |
save_edited_rules_btn = gr.Button("💾 Save Edited Text", variant="primary")
|
1066 |
-
with gr.Row(variant="compact"):
|
1067 |
-
dl_rules_btn = gr.DownloadButton("⬇️ Download Rules", value=None)
|
1068 |
-
clear_rules_btn = gr.Button("🗑️ Clear All Rules", variant="stop")
|
1069 |
-
upload_rules_fobj = gr.File(
|
1070 |
-
label="Upload Rules File (.txt with '---' separators, or .jsonl of rule strings)",
|
1071 |
-
file_types=[".txt", ".jsonl"]
|
1072 |
-
)
|
1073 |
-
rules_stat_tb = gr.Textbox(
|
1074 |
-
label="Rules Status", interactive=False, lines=1, elem_classes=["status-text"]
|
1075 |
-
)
|
1076 |
-
|
1077 |
with gr.Column():
|
1078 |
-
gr.
|
1079 |
-
mems_disp_json = gr.JSON(
|
1080 |
-
label="Current Memories", value=[]
|
1081 |
-
)
|
1082 |
-
gr.Markdown("To add memories, upload a .jsonl or .json file.")
|
1083 |
-
with gr.Row(variant="compact"):
|
1084 |
-
dl_mems_btn = gr.DownloadButton("⬇️ Download Memories", value=None)
|
1085 |
-
clear_mems_btn = gr.Button("🗑️ Clear All Memories", variant="stop")
|
1086 |
-
upload_mems_fobj = gr.File(
|
1087 |
-
label="Upload Memories File (.jsonl of memory objects, or .json array of objects)",
|
1088 |
-
file_types=[".jsonl", ".json"]
|
1089 |
-
)
|
1090 |
-
mems_stat_tb = gr.Textbox(
|
1091 |
-
label="Memories Status", interactive=False, lines=1, elem_classes=["status-text"]
|
1092 |
-
)
|
1093 |
|
1094 |
def dyn_upd_model_dd(sel_prov_dyn: str):
|
1095 |
-
|
1096 |
-
|
1097 |
-
return gr.Dropdown(choices=
|
1098 |
-
|
1099 |
prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)
|
1100 |
|
1101 |
-
# Inputs for the main chat submission function
|
1102 |
chat_ins = [user_msg_tb, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
|
1103 |
-
# Outputs for the main chat submission function (includes knowledge base displays)
|
1104 |
chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, detect_out_md, fmt_report_tb, dl_report_btn, rules_disp_ta, mems_disp_json]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1105 |
|
1106 |
-
|
1107 |
-
|
1108 |
-
send_btn.click(**chat_event_args)
|
1109 |
-
user_msg_tb.submit(**chat_event_args)
|
1110 |
-
|
1111 |
-
# Rules Management events
|
1112 |
-
dl_rules_btn.click(fn=ui_download_rules_action_fn, inputs=None, outputs=dl_rules_btn, show_progress=False) # show_progress=False for download buttons
|
1113 |
-
|
1114 |
-
save_edited_rules_btn.click(
|
1115 |
-
fn=save_edited_rules_action_fn,
|
1116 |
-
inputs=[rules_disp_ta],
|
1117 |
-
outputs=[rules_stat_tb],
|
1118 |
-
show_progress="full"
|
1119 |
-
).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False) # Refresh display after saving
|
1120 |
-
|
1121 |
-
upload_rules_fobj.upload(
|
1122 |
-
fn=ui_upload_rules_action_fn,
|
1123 |
-
inputs=[upload_rules_fobj],
|
1124 |
-
outputs=[rules_stat_tb],
|
1125 |
-
show_progress="full"
|
1126 |
-
).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False) # Refresh display after upload
|
1127 |
-
|
1128 |
-
clear_rules_btn.click(
|
1129 |
-
fn=lambda: ("All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules."),
|
1130 |
-
outputs=rules_stat_tb,
|
1131 |
-
show_progress=False
|
1132 |
-
).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False) # Refresh display after clear
|
1133 |
-
|
1134 |
-
# Memories Management events
|
1135 |
-
dl_mems_btn.click(fn=ui_download_memories_action_fn, inputs=None, outputs=dl_mems_btn, show_progress=False) # show_progress=False for download buttons
|
1136 |
-
|
1137 |
-
upload_mems_fobj.upload(
|
1138 |
-
fn=ui_upload_memories_action_fn,
|
1139 |
-
inputs=[upload_mems_fobj],
|
1140 |
-
outputs=[mems_stat_tb],
|
1141 |
-
show_progress="full"
|
1142 |
-
).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False) # Refresh display after upload
|
1143 |
-
|
1144 |
-
clear_mems_btn.click(
|
1145 |
-
fn=lambda: ("All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories."),
|
1146 |
-
outputs=mems_stat_tb,
|
1147 |
-
show_progress=False
|
1148 |
-
).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False) # Refresh display after clear
|
1149 |
-
|
1150 |
-
# FAISS save button visibility and action (RAM backend only)
|
1151 |
-
if MEMORY_STORAGE_BACKEND == "RAM" and 'save_faiss_sidebar_btn' in locals():
|
1152 |
-
def save_faiss_action_with_feedback_sidebar_fn():
|
1153 |
-
try:
|
1154 |
-
save_faiss_indices_to_disk()
|
1155 |
-
gr.Info("Attempted to save FAISS indices to disk.")
|
1156 |
-
except Exception as e:
|
1157 |
-
logger.error(f"Error saving FAISS indices: {e}", exc_info=True)
|
1158 |
-
gr.Error(f"Error saving FAISS indices: {e}")
|
1159 |
-
|
1160 |
-
save_faiss_sidebar_btn.click(fn=save_faiss_action_with_feedback_sidebar_fn, inputs=None, outputs=None, show_progress=False)
|
1161 |
-
|
1162 |
-
|
1163 |
-
# --- Initial Load Event ---
|
1164 |
-
# This function runs once when the Gradio app starts.
|
1165 |
-
# It initializes the memory system and loads data from specified files.
|
1166 |
-
# Its outputs populate the initial state of several UI components.
|
1167 |
-
app_load_outputs = [
|
1168 |
-
agent_stat_tb, # Updates status text
|
1169 |
-
rules_disp_ta, # Populates rules display
|
1170 |
-
mems_disp_json, # Populates memories display
|
1171 |
-
detect_out_md, # Sets initial visibility/value for insights markdown
|
1172 |
-
fmt_report_tb, # Sets initial value for detailed response textbox
|
1173 |
-
dl_report_btn # Sets initial state for download button
|
1174 |
-
]
|
1175 |
-
demo.load(fn=app_load_fn, inputs=None, outputs=app_load_outputs, show_progress="full")
|
1176 |
-
|
1177 |
|
1178 |
if __name__ == "__main__":
|
1179 |
-
logger.info(f"Starting Gradio AI Research
|
1180 |
app_port = int(os.getenv("GRADIO_PORT", 7860))
|
1181 |
app_server = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
|
1182 |
-
|
1183 |
-
app_share = os.getenv("GRADIO_SHARE", "False").lower() == "true"
|
1184 |
-
logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
|
1185 |
-
demo.queue().launch(server_name=app_server, server_port=app_port, debug=app_debug, share=app_share)
|
1186 |
-
logger.info("Gradio application shut down.")
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import re
|
|
|
12 |
load_dotenv()
|
13 |
|
14 |
MEMORY_STORAGE_TYPE = "HF_DATASET"
|
|
|
|
|
|
|
15 |
HF_DATASET_MEMORY_REPO = "broadfield-dev/ai-brain"
|
16 |
HF_DATASET_RULES_REPO = "broadfield-dev/ai-rules"
|
17 |
|
|
|
18 |
os.environ['STORAGE_BACKEND'] = MEMORY_STORAGE_TYPE
|
19 |
if MEMORY_STORAGE_TYPE == "HF_DATASET":
|
20 |
os.environ['HF_MEMORY_DATASET_REPO'] = HF_DATASET_MEMORY_REPO
|
21 |
os.environ['HF_RULES_DATASET_REPO'] = HF_DATASET_RULES_REPO
|
|
|
22 |
|
23 |
from model_logic import (
|
24 |
get_available_providers, get_model_display_names_for_provider,
|
25 |
get_default_model_display_name_for_provider, call_model_stream, MODELS_BY_PROVIDER
|
26 |
)
|
27 |
from memory_logic import (
|
28 |
+
initialize_memory_system, search_memories, add_memory_entry,
|
29 |
+
retrieve_rules_semantic, get_all_rules_cached, get_all_memories_cached,
|
30 |
+
add_rule_entry, remove_rule_entry, clear_all_memory_data_backend, clear_all_rules_data_backend,
|
31 |
+
save_faiss_indices_to_disk, STORAGE_BACKEND as MEMORY_STORAGE_BACKEND,
|
32 |
+
SQLITE_DB_PATH as MEMORY_SQLITE_PATH,
|
33 |
+
HF_MEMORY_DATASET_REPO as MEMORY_HF_MEM_REPO,
|
34 |
+
HF_RULES_DATASET_REPO as MEMORY_HF_RULES_REPO
|
35 |
)
|
36 |
from websearch_logic import scrape_url, search_and_scrape_duckduckgo, search_and_scrape_google
|
37 |
|
|
|
51 |
"Your Name is Node. You are a Helpful AI Assistant, and your goal is to improve yourself, so that you can improve everybody elses life. Your job is to answer questions and perform research tasks accurately and thoroughly. You can use tools like web search and page browsing. When providing information from the web, cite your sources if possible. If asked to perform a task beyond your capabilities, explain politely. Be concise unless asked for detail."
|
52 |
)
|
53 |
|
|
|
54 |
LOAD_RULES_FILE = os.getenv("LOAD_RULES_FILE")
|
55 |
LOAD_MEMORIES_FILE = os.getenv("LOAD_MEMORIES_FILE")
|
|
|
|
|
56 |
|
|
|
|
|
57 |
def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
|
58 |
+
if not retrieved_insights_list: return "No specific guiding principles or learned insights retrieved.", []
|
|
|
59 |
parsed = []
|
60 |
for text in retrieved_insights_list:
|
61 |
match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
|
|
|
65 |
parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
|
66 |
try:
|
67 |
parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
|
68 |
+
except ValueError: pass
|
69 |
grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
|
70 |
for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
|
71 |
sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
|
72 |
return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed
|
73 |
|
74 |
def generate_interaction_metrics(user_input: str, bot_response: str, provider: str, model_display_name: str, api_key_override: str = None) -> dict:
|
75 |
+
metric_messages = [
|
76 |
+
{"role": "system", "content": "You are a precise JSON output agent. Output a single JSON object containing interaction metrics as requested. Do not include any explanatory text."},
|
77 |
+
{"role": "user", "content": f"User: \"{user_input}\"\nAI: \"{bot_response}\"\nMetrics: \"takeaway\" (3-7 words), \"response_success_score\" (0.0-1.0), \"future_confidence_score\" (0.0-1.0). Output JSON ONLY."}
|
78 |
+
]
|
79 |
try:
|
|
|
80 |
metrics_model_env = os.getenv("METRICS_MODEL")
|
81 |
if metrics_model_env and "/" in metrics_model_env:
|
82 |
m_prov, m_id = metrics_model_env.split('/', 1)
|
83 |
m_disp_name = next((dn for dn, mid in MODELS_BY_PROVIDER.get(m_prov.lower(), {}).get("models", {}).items() if mid == m_id), None)
|
84 |
+
if m_disp_name: provider, model_display_name = m_prov, m_disp_name
|
85 |
+
|
86 |
+
resp_str = "".join(list(call_model_stream(provider=provider, model_display_name=model_display_name, messages=metric_messages, api_key_override=api_key_override, temperature=0.05, max_tokens=200)))
|
87 |
+
json_match = re.search(r"\{.*\}", resp_str, re.DOTALL)
|
88 |
+
if json_match:
|
89 |
+
metrics_data = json.loads(json_match.group(0))
|
90 |
+
return {"takeaway": metrics_data.get("takeaway", "N/A"), "response_success_score": float(metrics_data.get("response_success_score", 0.5)), "future_confidence_score": float(metrics_data.get("future_confidence_score", 0.5))}
|
|
|
|
|
|
|
|
|
|
|
91 |
except Exception as e:
|
92 |
+
logger.error(f"METRICS_GEN Error: {e}")
|
93 |
+
return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": "metrics format error"}
|
|
|
94 |
|
95 |
def process_user_interaction_gradio(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None):
|
|
|
96 |
request_id = os.urandom(4).hex()
|
97 |
+
logger.info(f"PUI_GRADIO [{request_id}] Start. User: '{user_input[:50]}...'")
|
98 |
history_str_for_prompt = "\n".join([f"{('User' if t_msg['role'] == 'user' else 'AI')}: {t_msg['content']}" for t_msg in chat_history_for_prompt[-(MAX_HISTORY_TURNS * 2):]])
|
99 |
+
yield "status", "<i>[Checking guidelines...]</i>"
|
100 |
+
initial_insights, parsed_initial_insights_list = format_insights_for_prompt(retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5))
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
action_type = "quick_respond"
|
103 |
+
action_input_dict = {}
|
104 |
+
|
105 |
+
if not (len(user_input.split()) <= 3 and any(kw in user_input.lower() for kw in ["hello", "hi", "thanks", "ok", "bye"]) and "?" not in user_input):
|
|
|
106 |
yield "status", "<i>[LLM choosing best approach...]</i>"
|
107 |
tool_definitions = {
|
108 |
+
"answer_using_conversation_memory": "Use if the user's query refers to a past conversation, asks you to 'remember' or 'recall' something, or seems to require knowledge you might have gained previously.",
|
109 |
+
"search_duckduckgo_and_report": "Use for general knowledge questions, current events, or explicit requests to search the web.",
|
110 |
+
"quick_respond": "Use as a fallback for simple greetings or if the answer is obvious from immediate context."
|
|
|
111 |
}
|
112 |
+
available_tools = ["quick_respond", "answer_using_conversation_memory"] + (["search_duckduckgo_and_report"] if WEB_SEARCH_ENABLED else [])
|
113 |
+
tool_desc = "\n".join(f'- "{name}": {tool_definitions[name]}' for name in available_tools)
|
114 |
+
tool_sys_prompt = "You are a precise routing agent. Analyze the user's query and select the single best action. Output ONLY a valid JSON object like {\"action\": \"action_name\", \"action_input\": {\"param\": \"value\"}}."
|
115 |
+
tool_user_prompt = f"User Query: \"{user_input}\"\n\nAvailable Actions:\n{tool_desc}\n\nSelect one action."
|
116 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
tool_provider, tool_model_id = TOOL_DECISION_PROVIDER_ENV, TOOL_DECISION_MODEL_ID_ENV
|
118 |
tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(tool_provider.lower(), {}).get("models", {}).items() if mid == tool_model_id), None)
|
119 |
if not tool_model_display: tool_model_display = get_default_model_display_name_for_provider(tool_provider)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
try:
|
122 |
+
tool_resp_raw = "".join(list(call_model_stream(provider=tool_provider, model_display_name=tool_model_display, messages=[{"role":"system", "content": tool_sys_prompt}, {"role":"user", "content": tool_user_prompt}], temperature=0.0, max_tokens=150)))
|
123 |
+
json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL)
|
124 |
+
if json_match_tool:
|
125 |
+
action_data = json.loads(json_match_tool.group(0))
|
126 |
+
action_type = action_data.get("action", "quick_respond")
|
127 |
+
action_input_dict = action_data.get("action_input", {})
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Tool decision error: {e}")
|
130 |
+
action_type = "quick_respond"
|
131 |
+
|
132 |
yield "status", f"<i>[Path: {action_type}. Preparing response...]</i>"
|
133 |
+
final_system_prompt_str = custom_system_prompt or DEFAULT_SYSTEM_PROMPT
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
if action_type == "answer_using_conversation_memory":
|
136 |
+
yield "status", "<i>[Optimizing query for memory search...]</i>"
|
|
|
137 |
optimized_query = user_input
|
138 |
try:
|
139 |
+
query_gen_sys = "Reformulate the user's question into a concise, self-contained search query for a vector database. Output ONLY the query text."
|
140 |
+
query_gen_user = f"History:\n{history_str_for_prompt}\n\nUser Query: \"{user_input}\"\n\nOptimized Query:"
|
141 |
+
generated_query = "".join(list(call_model_stream(provider=tool_provider, model_display_name=tool_model_display, messages=[{"role":"system", "content":query_gen_sys}, {"role":"user", "content":query_gen_user}], temperature=0.0, max_tokens=50))).strip().replace('"', '')
|
142 |
+
if generated_query: optimized_query = generated_query
|
143 |
+
except Exception: pass
|
144 |
+
logger.info(f"Optimized memory search query: '{optimized_query}'")
|
145 |
+
|
146 |
+
yield "status", "<i>[Searching memories...]</i>"
|
147 |
+
retrieved_mems, search_path = search_memories(query=optimized_query, k=3, threshold=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
if search_path == "deep":
|
150 |
+
yield "status", "<i>[No recent match. Performing deep search...]</i>"
|
151 |
+
|
152 |
+
memory_context = "No relevant past interactions found."
|
153 |
if retrieved_mems:
|
154 |
+
memory_context = "Relevant Past Interactions:\n" + "\n".join([f"- User asked: '{m.get('user_input','')}'. You responded: '{m.get('bot_response','')}'. (Takeaway: {m.get('metrics',{}).get('takeaway','N/A')})" for m in retrieved_mems])
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
final_system_prompt_str += " You MUST use the 'Memory Context' to inform your answer."
|
157 |
+
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\n\nGuidelines:\n{initial_insights}\n\nMemory Context:\n{memory_context}\n\nUser Query: \"{user_input}\"\n\nResponse:"
|
158 |
+
elif action_type == "search_duckduckgo_and_report":
|
159 |
+
query_or_url = action_input_dict.get("search_engine_query", user_input)
|
160 |
+
yield "status", f"<i>[Web: '{query_or_url[:60]}'...]</i>"
|
161 |
+
web_results = search_and_scrape_duckduckgo(query_or_url, num_results=2)
|
162 |
+
scraped_content = "\n".join([f"Source {i+1}:\nURL:{r.get('url','N/A')}\nTitle:{r.get('title','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:3500]}\n---" for i,r in enumerate(web_results)]) if web_results else f"No results for '{query_or_url}'."
|
163 |
+
yield "status", "<i>[Synthesizing web report...]</i>"
|
164 |
+
final_system_prompt_str += " Generate a report from web content, citing URLs as [Source X]."
|
165 |
+
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights}\nWeb Content:\n{scraped_content}\nQuery: \"{user_input}\"\nReport/Response:"
|
166 |
+
else:
|
167 |
+
final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights}\nQuery: \"{user_input}\"\nResponse:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
final_llm_messages = [{"role": "system", "content": final_system_prompt_str}, {"role": "user", "content": final_user_prompt_content_str}]
|
170 |
+
streamed_response = ""
|
171 |
+
for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=final_llm_messages, api_key_override=ui_api_key_override, temperature=0.6, max_tokens=2500):
|
172 |
+
streamed_response += chunk
|
173 |
+
yield "response_chunk", chunk
|
174 |
+
|
175 |
+
final_bot_text = streamed_response.strip() or "(No response.)"
|
|
|
|
|
|
|
|
|
|
|
176 |
yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list}
|
177 |
|
|
|
|
|
178 |
def perform_post_interaction_learning(user_input: str, bot_response: str, provider: str, model_disp_name: str, insights_reflected: list[dict], api_key_override: str = None):
|
179 |
task_id = os.urandom(4).hex()
|
180 |
+
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: START")
|
181 |
+
metrics = generate_interaction_metrics(user_input, bot_response, provider, model_disp_name, api_key_override)
|
182 |
+
add_memory_entry(user_input, metrics, bot_response)
|
183 |
+
summary = f"User:\"{user_input}\"\nAI:\"{bot_response}\"\nMetrics(takeaway):{metrics.get('takeaway','N/A')},Success:{metrics.get('response_success_score','N/A')}"
|
184 |
+
existing_rules_ctx = "\n".join([f"- \"{r}\"" for r in retrieve_rules_semantic(f"{summary}\n{user_input}", k=10)]) or "No existing rules context."
|
185 |
+
insight_sys_prompt = """You are an expert AI knowledge base curator. Your primary function is to meticulously analyze an interaction and update the AI's guiding principles (insights/rules) to improve its future performance and self-understanding.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
**CRITICAL OUTPUT REQUIREMENT: You MUST output a single, valid XML structure representing a list of operation objects.**
|
187 |
The root element should be `<operations_list>`. Each operation should be an `<operation>` element.
|
188 |
If no operations are warranted, output an empty list: `<operations_list></operations_list>`.
|
|
|
191 |
1. `<action>`: A string, either `"add"` (for entirely new rules) or `"update"` (to replace an existing rule with a better one).
|
192 |
2. `<insight>`: The full, refined insight text including its `[TYPE|SCORE]` prefix (e.g., `[CORE_RULE|1.0] My name is Lumina, an AI assistant.`). Multi-line insight text can be placed directly within this tag; XML handles newlines naturally.
|
193 |
3. `<old_insight_to_replace>`: (ONLY for `"update"` action) The *exact, full text* of an existing insight that the new `<insight>` should replace. If action is `"add"`, this element should be omitted or empty.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
"""
|
195 |
+
insight_user_prompt = f"""Interaction Summary:\n{summary}\n
|
196 |
Potentially Relevant Existing Rules (Review these carefully. Your main goal is to consolidate CORE_RULEs and then identify other changes/additions based on the Interaction Summary and these existing rules):\n{existing_rules_ctx}\n
|
197 |
Guiding principles that were considered during THIS interaction (these might offer clues for new rules or refinements):\n{json.dumps([p['original'] for p in insights_reflected if 'original' in p]) if insights_reflected else "None"}\n
|
198 |
+
Task: Based on your reflection process:
|
199 |
+
1. **Consolidate CORE_RULEs:** Merge similar identity/purpose rules into single, definitive statements using "update" operations.
|
200 |
+
2. **Add New Learnings:** "add" any distinct new facts, skills, or important user preferences learned from the "Interaction Summary".
|
201 |
+
3. **Update Existing Principles:** "update" any non-core principles if the "Interaction Summary" provided a clear refinement.
|
202 |
+
Combine all findings into a single, valid XML structure. Output XML ONLY.
|
203 |
"""
|
204 |
+
insight_msgs = [{"role":"system", "content":insight_sys_prompt}, {"role":"user", "content":insight_user_prompt}]
|
205 |
+
insight_prov, insight_model_disp = provider, model_disp_name
|
206 |
+
insight_env_model = os.getenv("INSIGHT_MODEL_OVERRIDE")
|
207 |
+
if insight_env_model and "/" in insight_env_model:
|
208 |
+
i_p, i_id = insight_env_model.split('/', 1)
|
209 |
+
i_d_n = next((dn for dn, mid in MODELS_BY_PROVIDER.get(i_p.lower(), {}).get("models", {}).items() if mid == i_id), None)
|
210 |
+
if i_d_n: insight_prov, insight_model_disp = i_p, i_d_n
|
211 |
+
raw_ops_xml_full = "".join(list(call_model_stream(provider=insight_prov, model_display_name=insight_model_disp, messages=insight_msgs, api_key_override=api_key_override, temperature=0.0, max_tokens=3500))).strip()
|
212 |
+
xml_match = re.search(r"<operations_list>.*</operations_list>", raw_ops_xml_full, re.DOTALL | re.IGNORECASE)
|
213 |
+
if not xml_match:
|
214 |
+
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No valid XML operations found.")
|
215 |
+
return
|
216 |
+
try:
|
217 |
+
root = ET.fromstring(xml_match.group(0))
|
218 |
+
for op_element in root.findall("operation"):
|
219 |
+
action = op_element.find("action").text.strip().lower() if op_element.find("action") is not None and op_element.find("action").text else None
|
220 |
+
insight_text = op_element.find("insight").text.strip() if op_element.find("insight") is not None and op_element.find("insight").text else None
|
221 |
+
if not action or not insight_text: continue
|
222 |
+
if action == "add":
|
223 |
+
add_rule_entry(insight_text)
|
224 |
+
elif action == "update":
|
225 |
+
old_insight_text = op_element.find("old_insight_to_replace").text.strip() if op_element.find("old_insight_to_replace") is not None and op_element.find("old_insight_to_replace").text else None
|
226 |
+
if old_insight_text:
|
227 |
+
remove_rule_entry(old_insight_text)
|
228 |
+
add_rule_entry(insight_text)
|
229 |
+
except Exception as e:
|
230 |
+
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: Error processing insight XML: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
|
233 |
global current_chat_session_history
|
234 |
cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
|
235 |
+
updated_rules_text = ui_refresh_rules_display_fn()
|
236 |
+
updated_mems_json = ui_refresh_memories_display_fn()
|
|
|
237 |
def_detect_out_md = gr.Markdown(visible=False)
|
238 |
+
def_fmt_out_txt = gr.Textbox(value="*Waiting...*", interactive=True)
|
239 |
def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
|
240 |
|
241 |
if not user_msg_txt.strip():
|
242 |
+
yield (cleared_input, updated_gr_hist, "Error: Empty message.", def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
|
|
|
|
|
|
243 |
return
|
244 |
|
245 |
updated_gr_hist.append((user_msg_txt, "<i>Thinking...</i>"))
|
|
|
246 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
247 |
|
248 |
+
internal_hist = list(current_chat_session_history)
|
249 |
+
internal_hist.append({"role": "user", "content": user_msg_txt})
|
250 |
+
|
|
|
|
|
|
|
|
|
|
|
251 |
final_bot_resp_acc, insights_used_parsed = "", []
|
252 |
temp_dl_file_path = None
|
253 |
|
|
|
258 |
if upd_type == "status":
|
259 |
status_txt = upd_data
|
260 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
|
|
261 |
updated_gr_hist[-1] = (user_msg_txt, f"{curr_bot_disp_msg} <i>{status_txt}</i>" if curr_bot_disp_msg else f"<i>{status_txt}</i>")
|
262 |
elif upd_type == "response_chunk":
|
263 |
curr_bot_disp_msg += upd_data
|
264 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
265 |
+
updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg)
|
266 |
elif upd_type == "final_response_and_insights":
|
267 |
final_bot_resp_acc, insights_used_parsed = upd_data["response"], upd_data["insights_used"]
|
268 |
status_txt = "Response generated. Processing learning..."
|
|
|
|
|
269 |
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
|
270 |
+
updated_gr_hist[-1] = (user_msg_txt, final_bot_resp_acc or "(No text)")
|
271 |
+
|
272 |
+
def_fmt_out_txt = gr.Textbox(value=final_bot_resp_acc, interactive=True)
|
273 |
+
if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
|
274 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", encoding='utf-8') as tmpfile:
|
275 |
+
tmpfile.write(final_bot_resp_acc)
|
276 |
+
temp_dl_file_path = tmpfile.name
|
277 |
+
def_dl_btn = gr.DownloadButton(value=temp_dl_file_path, visible=True, interactive=True)
|
278 |
+
|
279 |
+
insights_md_content = "### Insights Considered:\n" + ("\n".join([f"- **[{i.get('type','N/A')}|{i.get('score','N/A')}]** {i.get('text','N/A')[:100]}..." for i in insights_used_parsed[:3]]) if insights_used_parsed else "*None.*")
|
280 |
+
def_detect_out_md = gr.Markdown(value=insights_md_content, visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
|
|
|
|
282 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
|
|
|
|
283 |
if upd_type == "final_response_and_insights": break
|
|
|
284 |
except Exception as e:
|
285 |
+
status_txt = f"Error: {str(e)[:100]}"
|
286 |
+
updated_gr_hist.append((user_msg_txt, f"Sorry, an error occurred: {status_txt}"))
|
287 |
+
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
288 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
|
|
290 |
if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
|
|
|
291 |
current_chat_session_history.extend([{"role": "user", "content": user_msg_txt}, {"role": "assistant", "content": final_bot_resp_acc}])
|
292 |
+
if len(current_chat_session_history) > MAX_HISTORY_TURNS * 2:
|
293 |
+
current_chat_session_history = current_chat_session_history[-(MAX_HISTORY_TURNS * 2):]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
yield (cleared_input, updated_gr_hist, "<i>[Performing post-interaction learning...]</i>", def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
296 |
+
perform_post_interaction_learning(user_input=user_msg_txt, bot_response=final_bot_resp_acc, provider=sel_prov_name, model_disp_name=sel_model_disp_name, insights_reflected=insights_used_parsed, api_key_override=ui_api_key.strip() if ui_api_key else None)
|
297 |
+
status_txt = "Response & Learning Complete."
|
298 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
updated_rules_text = ui_refresh_rules_display_fn()
|
300 |
updated_mems_json = ui_refresh_memories_display_fn()
|
|
|
301 |
yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
|
|
|
|
|
302 |
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
|
303 |
try: os.unlink(temp_dl_file_path)
|
304 |
+
except: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
def ui_refresh_rules_display_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
def ui_refresh_memories_display_fn(): return get_all_memories_cached() or []
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
def app_load_fn():
|
|
|
310 |
initialize_memory_system()
|
311 |
+
return "AI Systems Initialized. Ready.", ui_refresh_rules_display_fn(), ui_refresh_memories_display_fn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=".gr-json { max-height: 300px; overflow-y: auto; }") as demo:
|
314 |
+
gr.Markdown("# 🤖 AI Research Agent")
|
315 |
with gr.Row(variant="compact"):
|
316 |
+
agent_stat_tb = gr.Textbox(label="Agent Status", value="Initializing...", interactive=False, scale=4)
|
|
|
|
|
|
|
317 |
with gr.Column(scale=1, min_width=150):
|
318 |
+
gr.Textbox(label="Memory Backend", value=MEMORY_STORAGE_BACKEND, interactive=False)
|
319 |
+
gr.Textbox(label="SQLite Path", value=MEMORY_SQLITE_PATH, interactive=False, visible=MEMORY_STORAGE_BACKEND == "SQLITE")
|
320 |
+
gr.Textbox(label="HF Repos", value=f"M: {MEMORY_HF_MEM_REPO}, R: {MEMORY_HF_RULES_REPO}", interactive=False, visible=MEMORY_STORAGE_BACKEND == "HF_DATASET")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
with gr.Row():
|
322 |
with gr.Sidebar():
|
323 |
gr.Markdown("## ⚙️ Configuration")
|
324 |
+
api_key_tb = gr.Textbox(label="API Key (Override)", type="password")
|
325 |
+
available_providers = get_available_providers()
|
326 |
+
prov_sel_dd = gr.Dropdown(label="AI Provider", choices=available_providers, value=available_providers[0] if available_providers else None, interactive=True)
|
327 |
+
model_sel_dd = gr.Dropdown(label="AI Model", choices=get_model_display_names_for_provider(prov_sel_dd.value) if prov_sel_dd.value else [], value=get_default_model_display_name_for_provider(prov_sel_dd.value) if prov_sel_dd.value else None, interactive=True)
|
328 |
+
sys_prompt_tb = gr.Textbox(label="System Prompt", lines=8, value=DEFAULT_SYSTEM_PROMPT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
with gr.Column(scale=3):
|
330 |
with gr.Tabs():
|
331 |
with gr.TabItem("💬 Chat & Research"):
|
332 |
+
main_chat_disp = gr.Chatbot(label="Chat", height=400, show_copy_button=True, render_markdown=True)
|
333 |
+
user_msg_tb = gr.Textbox(placeholder="Ask a question...", scale=7)
|
334 |
+
send_btn = gr.Button("Send", variant="primary")
|
335 |
+
with gr.Accordion("📝 Detailed Response & Insights", open=False):
|
336 |
+
fmt_report_tb = gr.Textbox(label="Full AI Response", lines=8, interactive=True, show_copy_button=True)
|
337 |
+
dl_report_btn = gr.DownloadButton("Download Report", interactive=False, visible=False)
|
338 |
+
detect_out_md = gr.Markdown(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
with gr.TabItem("🧠 Knowledge Base"):
|
340 |
+
with gr.Row():
|
341 |
with gr.Column():
|
342 |
+
rules_disp_ta = gr.TextArea(label="Current Rules", lines=10, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
save_edited_rules_btn = gr.Button("💾 Save Edited Text", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
with gr.Column():
|
345 |
+
mems_disp_json = gr.JSON(label="Current Memories")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
def dyn_upd_model_dd(sel_prov_dyn: str):
|
348 |
+
models = get_model_display_names_for_provider(sel_prov_dyn)
|
349 |
+
default_model = get_default_model_display_name_for_provider(sel_prov_dyn)
|
350 |
+
return gr.Dropdown(choices=models, value=default_model, interactive=True)
|
|
|
351 |
prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)
|
352 |
|
|
|
353 |
chat_ins = [user_msg_tb, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
|
|
|
354 |
chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, detect_out_md, fmt_report_tb, dl_report_btn, rules_disp_ta, mems_disp_json]
|
355 |
+
|
356 |
+
send_btn.click(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs)
|
357 |
+
user_msg_tb.submit(fn=handle_gradio_chat_submit, inputs=chat_ins, outputs=chat_outs)
|
358 |
+
|
359 |
+
def save_rules_from_editor(text):
|
360 |
+
for line in text.splitlines():
|
361 |
+
if line.strip(): add_rule_entry(line.strip())
|
362 |
+
return ui_refresh_rules_display_fn()
|
363 |
+
save_edited_rules_btn.click(fn=save_rules_from_editor, inputs=[rules_disp_ta], outputs=[rules_disp_ta])
|
364 |
|
365 |
+
demo.load(fn=app_load_fn, outputs=[agent_stat_tb, rules_disp_ta, mems_disp_json])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
if __name__ == "__main__":
|
368 |
+
logger.info(f"Starting Gradio AI Research Agent (Memory: {MEMORY_STORAGE_TYPE})...")
|
369 |
app_port = int(os.getenv("GRADIO_PORT", 7860))
|
370 |
app_server = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
|
371 |
+
demo.queue().launch(server_name=app_server, server_port=app_port, share=False)
|
|
|
|
|
|
|
|