broadfield-dev commited on
Commit
e889bb7
·
verified ·
1 Parent(s): 872bd49

Update memory_logic.py

Browse files
Files changed (1) hide show
  1. memory_logic.py +296 -147
memory_logic.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import os
2
  import json
3
  import time
@@ -6,6 +7,7 @@ import logging
6
  import re
7
  import threading
8
 
 
9
  try:
10
  from sentence_transformers import SentenceTransformer
11
  import faiss
@@ -26,38 +28,40 @@ except ImportError:
26
  load_dataset, Dataset = None, None
27
  logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
28
 
 
29
  logger = logging.getLogger(__name__)
 
30
  for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
31
- if logging.getLogger(lib_name):
32
  logging.getLogger(lib_name).setLevel(logging.WARNING)
33
 
34
- STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper()
35
- SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
 
 
36
  HF_TOKEN = os.getenv("HF_TOKEN")
37
- HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
38
- HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
39
 
 
40
  _embedder = None
41
- _dimension = 384
42
-
43
- _long_term_memory_items_list = []
44
- _faiss_long_term_memory_index = None
45
- _short_term_memory_items_list = []
46
- _faiss_short_term_memory_index = None
47
-
48
- _rules_items_list = []
49
  _faiss_rules_index = None
 
50
 
51
  _initialized = False
52
  _init_lock = threading.Lock()
53
 
 
54
  def _get_sqlite_connection():
55
  if not sqlite3:
56
  raise ImportError("sqlite3 module is required for SQLite backend but not found.")
57
  db_dir = os.path.dirname(SQLITE_DB_PATH)
58
  if db_dir and not os.path.exists(db_dir):
59
  os.makedirs(db_dir, exist_ok=True)
60
- return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
61
 
62
  def _init_sqlite_tables():
63
  if STORAGE_BACKEND != "SQLITE" or not sqlite3:
@@ -65,293 +69,438 @@ def _init_sqlite_tables():
65
  try:
66
  with _get_sqlite_connection() as conn:
67
  cursor = conn.cursor()
 
68
  cursor.execute("""
69
  CREATE TABLE IF NOT EXISTS memories (
70
  id INTEGER PRIMARY KEY AUTOINCREMENT,
71
  memory_json TEXT NOT NULL,
 
 
72
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
73
  )
74
  """)
 
75
  cursor.execute("""
76
  CREATE TABLE IF NOT EXISTS rules (
77
  id INTEGER PRIMARY KEY AUTOINCREMENT,
78
  rule_text TEXT NOT NULL UNIQUE,
 
79
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
80
  )
81
  """)
82
  conn.commit()
 
83
  except Exception as e:
84
  logger.error(f"SQLite table initialization error: {e}", exc_info=True)
85
 
86
- def _build_faiss_index_from_json_strings(memory_items: list[str]) -> faiss.Index | None:
87
- if not memory_items or not _embedder:
88
- return faiss.IndexFlatL2(_dimension)
89
-
90
- texts_to_embed = []
91
- for mem_json_str in memory_items:
92
- try:
93
- mem_obj = json.loads(mem_json_str)
94
- text = f"User: {mem_obj.get('user_input', '')}\nAI: {mem_obj.get('bot_response', '')}\nTakeaway: {mem_obj.get('metrics', {}).get('takeaway', 'N/A')}"
95
- texts_to_embed.append(text)
96
- except json.JSONDecodeError:
97
- continue
98
-
99
- if not texts_to_embed:
100
- return faiss.IndexFlatL2(_dimension)
101
-
102
- try:
103
- embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
104
- embeddings_np = np.array(embeddings, dtype=np.float32)
105
- if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
106
- index = faiss.IndexFlatL2(_dimension)
107
- index.add(embeddings_np)
108
- return index
109
- else:
110
- logger.error(f"Error building FAISS index: embedding shape mismatch.")
111
- return faiss.IndexFlatL2(_dimension)
112
- except Exception as e:
113
- logger.error(f"Failed to build FAISS index: {e}", exc_info=True)
114
- return faiss.IndexFlatL2(_dimension)
115
-
116
  def initialize_memory_system():
117
- global _initialized, _embedder, _dimension
118
- global _long_term_memory_items_list, _faiss_long_term_memory_index
119
- global _short_term_memory_items_list, _faiss_short_term_memory_index
120
- global _rules_items_list, _faiss_rules_index
121
-
122
  with _init_lock:
123
  if _initialized:
 
124
  return
125
 
126
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
127
-
128
- if not all([SentenceTransformer, faiss, np]):
129
- logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
130
- return
131
 
 
 
 
 
 
 
132
  if not _embedder:
133
  try:
 
134
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
135
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
 
136
  except Exception as e:
137
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
138
- return
 
139
 
 
140
  if STORAGE_BACKEND == "SQLITE":
141
  _init_sqlite_tables()
142
-
143
- long_term_mems = []
144
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
 
 
 
145
  try:
146
  with _get_sqlite_connection() as conn:
147
- long_term_mems = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
148
- except Exception as e: logger.error(f"Error loading long-term memories from SQLite: {e}")
149
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
150
  try:
 
151
  dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
152
  if "train" in dataset and "memory_json" in dataset["train"].column_names:
153
- long_term_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str)]
154
- except Exception as e: logger.error(f"Error loading long-term memories from HF Dataset: {e}")
155
-
156
- _long_term_memory_items_list = long_term_mems
157
- _faiss_long_term_memory_index = _build_faiss_index_from_json_strings(_long_term_memory_items_list)
158
-
159
- _short_term_memory_items_list = []
160
- _faiss_short_term_memory_index = faiss.IndexFlatL2(_dimension)
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  temp_rules_text = []
163
- if STORAGE_BACKEND == "SQLITE" and sqlite3:
 
 
164
  try:
165
- with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules")]
166
- except Exception: pass
167
- elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
 
168
  try:
 
169
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
170
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
171
- temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
172
- except Exception: pass
 
 
 
 
173
 
174
- _rules_items_list = sorted(list(set(temp_rules_text)))
175
  _faiss_rules_index = faiss.IndexFlatL2(_dimension)
176
  if _rules_items_list:
177
- rule_embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
178
- _faiss_rules_index.add(np.array(rule_embeddings, dtype=np.float32))
 
 
 
 
 
 
 
 
179
 
180
  _initialized = True
 
181
 
 
 
182
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
 
 
183
  if not _initialized: initialize_memory_system()
184
- if not _embedder: return False, "Embedder not initialized."
185
-
186
- memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
 
 
 
 
 
 
187
  memory_json_str = json.dumps(memory_obj)
 
188
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
189
 
190
  try:
191
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
192
  embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
193
 
194
- _faiss_short_term_memory_index.add(embedding_np)
195
- _short_term_memory_items_list.append(memory_json_str)
 
 
 
 
 
 
 
196
 
 
197
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
198
  with _get_sqlite_connection() as conn:
199
  conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
200
  conn.commit()
201
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
202
- all_mems_for_push = _long_term_memory_items_list + _short_term_memory_items_list
203
- Dataset.from_dict({"memory_json": list(set(all_mems_for_push))}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
 
204
 
 
205
  return True, "Memory added successfully."
206
  except Exception as e:
207
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
 
208
  return False, f"Error adding memory: {e}"
209
 
210
- def search_memories(query: str, k: int = 3, threshold: float = 1.0) -> tuple[list[dict], str]:
 
211
  if not _initialized: initialize_memory_system()
212
- if not _embedder: return [], "uninitialized"
 
 
213
 
214
- query_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
215
- final_results = {}
216
- search_path = "short"
217
 
218
- if _faiss_short_term_memory_index and _faiss_short_term_memory_index.ntotal > 0:
219
- distances, indices = _faiss_short_term_memory_index.search(query_embedding, min(k, _faiss_short_term_memory_index.ntotal))
220
- best_dist = distances[0][0] if len(distances[0]) > 0 else float('inf')
 
 
221
 
222
- if best_dist < threshold:
223
- for i in indices[0]:
224
- res = json.loads(_short_term_memory_items_list[i])
225
- final_results[res['timestamp']] = res
226
- return list(final_results.values()), search_path
227
-
228
- search_path = "deep"
229
-
230
- if _faiss_long_term_memory_index and _faiss_long_term_memory_index.ntotal > 0:
231
- distances, indices = _faiss_long_term_memory_index.search(query_embedding, min(k, _faiss_long_term_memory_index.ntotal))
232
  for i in indices[0]:
233
- res = json.loads(_long_term_memory_items_list[i])
234
- final_results[res['timestamp']] = res
235
-
236
- return list(final_results.values()), search_path
 
 
 
237
 
238
- def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
239
- if not _initialized: initialize_memory_system()
240
- if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
241
- try:
242
- q_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
243
- _, indices = _faiss_rules_index.search(q_embedding, min(k, _faiss_rules_index.ntotal))
244
- return [_rules_items_list[i] for i in indices[0]]
245
  except Exception as e:
246
- logger.error(f"Error retrieving rules: {e}", exc_info=True)
247
  return []
248
 
249
- def get_all_memories_cached() -> list[dict]:
250
- if not _initialized: initialize_memory_system()
251
- all_mems = _long_term_memory_items_list + _short_term_memory_items_list
252
- seen_ts = set()
253
- unique_mem_dicts = []
254
- for mem_json_str in reversed(all_mems):
255
- try:
256
- mem_dict = json.loads(mem_json_str)
257
- if mem_dict['timestamp'] not in seen_ts:
258
- unique_mem_dicts.append(mem_dict)
259
- seen_ts.add(mem_dict['timestamp'])
260
- except: continue
261
- return unique_mem_dicts
262
-
263
- def add_rule_entry(rule_text: str):
264
  global _rules_items_list, _faiss_rules_index
265
  if not _initialized: initialize_memory_system()
266
- if not _embedder: return False, "Embedder not initialized."
 
 
267
  rule_text = rule_text.strip()
268
- if not rule_text or rule_text in _rules_items_list: return False, "duplicate or empty"
269
  if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
270
  return False, "Invalid rule format."
 
 
 
271
  try:
272
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
273
- _faiss_rules_index.add(np.array(embedding, dtype=np.float32))
 
 
 
 
 
274
  _rules_items_list.append(rule_text)
275
  _rules_items_list.sort()
 
276
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
277
  with _get_sqlite_connection() as conn:
278
  conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
279
  conn.commit()
280
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
281
- Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
282
- return True, "Rule added"
 
 
 
283
  except Exception as e:
284
- logger.error(f"Error adding rule: {e}", exc_info=True)
285
- return False, str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
 
287
  def remove_rule_entry(rule_text_to_delete: str) -> bool:
 
288
  global _rules_items_list, _faiss_rules_index
289
  if not _initialized: initialize_memory_system()
290
  if not _embedder or not _faiss_rules_index: return False
 
291
  rule_text_to_delete = rule_text_to_delete.strip()
292
  if rule_text_to_delete not in _rules_items_list:
293
- return False
 
294
  try:
295
  _rules_items_list.remove(rule_text_to_delete)
296
- _rules_items_list.sort()
 
 
297
  new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
298
  if _rules_items_list:
299
  embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
300
  embeddings_np = np.array(embeddings, dtype=np.float32)
301
- if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
302
  new_faiss_rules_index.add(embeddings_np)
303
- else:
 
 
304
  _rules_items_list.append(rule_text_to_delete)
305
  _rules_items_list.sort()
306
- return False
307
  _faiss_rules_index = new_faiss_rules_index
 
 
308
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
309
  with _get_sqlite_connection() as conn:
310
  conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
311
  conn.commit()
312
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
313
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
 
 
314
  return True
315
  except Exception as e:
316
  logger.error(f"Error removing rule entry: {e}", exc_info=True)
 
317
  return False
318
 
 
319
  def get_all_rules_cached() -> list[str]:
320
  if not _initialized: initialize_memory_system()
321
  return list(_rules_items_list)
322
 
 
 
 
 
 
 
 
 
 
323
  def clear_all_memory_data_backend() -> bool:
324
- global _long_term_memory_items_list, _short_term_memory_items_list, _faiss_long_term_memory_index, _faiss_short_term_memory_index
 
325
  if not _initialized: initialize_memory_system()
 
326
  success = True
327
  try:
328
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
329
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
330
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
 
331
  Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
332
- _long_term_memory_items_list = []
333
- _short_term_memory_items_list = []
334
- if _faiss_long_term_memory_index: _faiss_long_term_memory_index.reset()
335
- if _faiss_short_term_memory_index: _faiss_short_term_memory_index.reset()
336
  except Exception as e:
337
  logger.error(f"Error clearing all memory data: {e}")
338
  success = False
339
  return success
340
 
341
  def clear_all_rules_data_backend() -> bool:
 
342
  global _rules_items_list, _faiss_rules_index
343
  if not _initialized: initialize_memory_system()
 
344
  success = True
345
  try:
346
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
347
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
348
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
349
  Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
 
350
  _rules_items_list = []
351
  if _faiss_rules_index: _faiss_rules_index.reset()
 
352
  except Exception as e:
353
  logger.error(f"Error clearing all rules data: {e}")
354
  success = False
355
  return success
356
 
357
- def save_faiss_indices_to_disk(): pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # memory_logic.py
2
  import os
3
  import json
4
  import time
 
7
  import re
8
  import threading
9
 
10
+ # Conditionally import heavy dependencies
11
  try:
12
  from sentence_transformers import SentenceTransformer
13
  import faiss
 
28
  load_dataset, Dataset = None, None
29
  logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
30
 
31
+
32
  logger = logging.getLogger(__name__)
33
+ # Suppress verbose logs from dependencies
34
  for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
35
+ if logging.getLogger(lib_name): # Check if logger exists
36
  logging.getLogger(lib_name).setLevel(logging.WARNING)
37
 
38
+
39
+ # --- Configuration (Read directly from environment variables) ---
40
+ STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
41
+ SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
42
  HF_TOKEN = os.getenv("HF_TOKEN")
43
+ HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
44
+ HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
45
 
46
+ # --- Globals for RAG within this module ---
47
  _embedder = None
48
+ _dimension = 384 # Default, will be set by embedder
49
+ _faiss_memory_index = None
50
+ _memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
 
 
 
 
 
51
  _faiss_rules_index = None
52
+ _rules_items_list = [] # Stores rule text strings
53
 
54
  _initialized = False
55
  _init_lock = threading.Lock()
56
 
57
+ # --- Helper: SQLite Connection ---
58
  def _get_sqlite_connection():
59
  if not sqlite3:
60
  raise ImportError("sqlite3 module is required for SQLite backend but not found.")
61
  db_dir = os.path.dirname(SQLITE_DB_PATH)
62
  if db_dir and not os.path.exists(db_dir):
63
  os.makedirs(db_dir, exist_ok=True)
64
+ return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
65
 
66
  def _init_sqlite_tables():
67
  if STORAGE_BACKEND != "SQLITE" or not sqlite3:
 
69
  try:
70
  with _get_sqlite_connection() as conn:
71
  cursor = conn.cursor()
72
+ # Stores JSON string of the memory object
73
  cursor.execute("""
74
  CREATE TABLE IF NOT EXISTS memories (
75
  id INTEGER PRIMARY KEY AUTOINCREMENT,
76
  memory_json TEXT NOT NULL,
77
+ # Optionally add embedding here if not using separate FAISS index
78
+ # embedding BLOB,
79
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
80
  )
81
  """)
82
+ # Stores the rule text directly
83
  cursor.execute("""
84
  CREATE TABLE IF NOT EXISTS rules (
85
  id INTEGER PRIMARY KEY AUTOINCREMENT,
86
  rule_text TEXT NOT NULL UNIQUE,
87
+ # embedding BLOB,
88
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
89
  )
90
  """)
91
  conn.commit()
92
+ logger.info("SQLite tables for memories and rules checked/created.")
93
  except Exception as e:
94
  logger.error(f"SQLite table initialization error: {e}", exc_info=True)
95
 
96
+ # --- Initialization ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  def initialize_memory_system():
98
+ global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
99
+
 
 
 
100
  with _init_lock:
101
  if _initialized:
102
+ logger.info("Memory system already initialized.")
103
  return
104
 
105
  logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
106
+ init_start_time = time.time()
 
 
 
107
 
108
+ # 1. Load Sentence Transformer Model (always needed for semantic operations)
109
+ if not SentenceTransformer or not faiss or not np:
110
+ logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
111
+ _initialized = False # Mark as not properly initialized
112
+ return
113
+
114
  if not _embedder:
115
  try:
116
+ logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
117
  _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
118
  _dimension = _embedder.get_sentence_embedding_dimension() or 384
119
+ logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
120
  except Exception as e:
121
  logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
122
+ _initialized = False
123
+ return # Cannot proceed without embedder
124
 
125
+ # 2. Initialize SQLite if used
126
  if STORAGE_BACKEND == "SQLITE":
127
  _init_sqlite_tables()
128
+
129
+ # 3. Load Memories
130
+ logger.info("Loading memories...")
131
+ temp_memories_json = []
132
+ if STORAGE_BACKEND == "RAM":
133
+ pass
134
+ elif STORAGE_BACKEND == "SQLITE" and sqlite3:
135
  try:
136
  with _get_sqlite_connection() as conn:
137
+ temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
138
+ except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
139
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
140
  try:
141
+ logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
142
  dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
143
  if "train" in dataset and "memory_json" in dataset["train"].column_names:
144
+ temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
145
+ else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
146
+ except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
 
 
 
 
 
147
 
148
+ _memory_items_list = temp_memories_json
149
+ logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
150
+
151
+ # 4. Build/Load FAISS Memory Index
152
+ _faiss_memory_index = faiss.IndexFlatL2(_dimension)
153
+ if _memory_items_list:
154
+ logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
155
+ # Extract text to embed from memory JSON objects
156
+ texts_to_embed_mem = []
157
+ for mem_json_str in _memory_items_list:
158
+ try:
159
+ mem_obj = json.loads(mem_json_str)
160
+ # Consistent embedding strategy: user input + bot response + takeaway
161
+ text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
162
+ texts_to_embed_mem.append(text)
163
+ except json.JSONDecodeError:
164
+ logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
165
+
166
+ if texts_to_embed_mem:
167
+ try:
168
+ embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
169
+ embeddings_np = np.array(embeddings, dtype=np.float32)
170
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
171
+ _faiss_memory_index.add(embeddings_np)
172
+ else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
173
+ except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
174
+ logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
175
+
176
+
177
+ # 5. Load Rules
178
+ logger.info("Loading rules...")
179
  temp_rules_text = []
180
+ if STORAGE_BACKEND == "RAM":
181
+ pass
182
+ elif STORAGE_BACKEND == "SQLITE" and sqlite3:
183
  try:
184
+ with _get_sqlite_connection() as conn:
185
+ temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
186
+ except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
187
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
188
  try:
189
+ logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
190
  dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
191
  if "train" in dataset and "rule_text" in dataset["train"].column_names:
192
+ temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
193
+ else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
194
+ except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
195
+
196
+ _rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
197
+ logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
198
 
199
+ # 6. Build/Load FAISS Rules Index
200
  _faiss_rules_index = faiss.IndexFlatL2(_dimension)
201
  if _rules_items_list:
202
+ logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
203
+ if _rules_items_list: # Check again in case it became empty after filtering
204
+ try:
205
+ embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
206
+ embeddings_np = np.array(embeddings, dtype=np.float32)
207
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
208
+ _faiss_rules_index.add(embeddings_np)
209
+ else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
210
+ except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
211
+ logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
212
 
213
  _initialized = True
214
+ logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
215
 
216
+
217
+ # --- Memory Operations (Semantic) ---
218
  def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
219
+ """Adds a memory entry to the configured backend and FAISS index."""
220
+ global _memory_items_list, _faiss_memory_index
221
  if not _initialized: initialize_memory_system()
222
+ if not _embedder or not _faiss_memory_index:
223
+ return False, "Memory system or embedder not initialized for adding memory."
224
+
225
+ memory_obj = {
226
+ "user_input": user_input,
227
+ "metrics": metrics,
228
+ "bot_response": bot_response,
229
+ "timestamp": datetime.utcnow().isoformat()
230
+ }
231
  memory_json_str = json.dumps(memory_obj)
232
+
233
  text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
234
 
235
  try:
236
  embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
237
  embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
238
 
239
+ if embedding_np.shape != (1, _dimension):
240
+ logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
241
+ return False, "Embedding shape error."
242
+
243
+ # Add to FAISS
244
+ _faiss_memory_index.add(embedding_np)
245
+
246
+ # Add to in-memory list
247
+ _memory_items_list.append(memory_json_str)
248
 
249
+ # Add to persistent storage
250
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
251
  with _get_sqlite_connection() as conn:
252
  conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
253
  conn.commit()
254
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
255
+ # This can be slow, consider batching or async push
256
+ logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
257
+ Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
258
 
259
+ logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
260
  return True, "Memory added successfully."
261
  except Exception as e:
262
  logger.error(f"Error adding memory entry: {e}", exc_info=True)
263
+ # TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
264
  return False, f"Error adding memory: {e}"
265
 
266
+ def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
267
+ """Retrieves k most relevant memories using semantic search."""
268
  if not _initialized: initialize_memory_system()
269
+ if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
270
+ logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
271
+ return []
272
 
273
+ try:
274
+ query_embedding = _embedder.encode([query], convert_to_tensor=False)
275
+ query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
276
 
277
+ if query_embedding_np.shape[1] != _dimension:
278
+ logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
279
+ return []
280
+
281
+ distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
282
 
283
+ results = []
 
 
 
 
 
 
 
 
 
284
  for i in indices[0]:
285
+ if 0 <= i < len(_memory_items_list):
286
+ try:
287
+ results.append(json.loads(_memory_items_list[i]))
288
+ except json.JSONDecodeError:
289
+ logger.warning(f"Could not parse memory JSON from list at index {i}")
290
+ else:
291
+ logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
292
 
293
+ logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
294
+ return results
 
 
 
 
 
295
  except Exception as e:
296
+ logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
297
  return []
298
 
299
+
300
+ # --- Rule (Insight) Operations (Semantic) ---
301
+ def add_rule_entry(rule_text: str) -> tuple[bool, str]:
302
+ """Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
 
 
 
 
 
 
 
 
 
 
 
303
  global _rules_items_list, _faiss_rules_index
304
  if not _initialized: initialize_memory_system()
305
+ if not _embedder or not _faiss_rules_index:
306
+ return False, "Rule system or embedder not initialized."
307
+
308
  rule_text = rule_text.strip()
309
+ if not rule_text: return False, "Rule text cannot be empty."
310
  if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
311
  return False, "Invalid rule format."
312
+ if rule_text in _rules_items_list:
313
+ return False, "duplicate"
314
+
315
  try:
316
  embedding = _embedder.encode([rule_text], convert_to_tensor=False)
317
+ embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
318
+
319
+ if embedding_np.shape != (1, _dimension):
320
+ return False, "Rule embedding shape error."
321
+
322
+ _faiss_rules_index.add(embedding_np)
323
  _rules_items_list.append(rule_text)
324
  _rules_items_list.sort()
325
+
326
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
327
  with _get_sqlite_connection() as conn:
328
  conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
329
  conn.commit()
330
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
331
+ logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
332
+ Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
333
+
334
+ logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
335
+ return True, "Rule added successfully."
336
  except Exception as e:
337
+ logger.error(f"Error adding rule entry: {e}", exc_info=True)
338
+ # Basic rollback if FAISS add succeeded
339
+ if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
340
+ # A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
341
+ # For simplicity, this is omitted here. State could be inconsistent on error.
342
+ pass
343
+ return False, f"Error adding rule: {e}"
344
+
345
+ def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
346
+ """Retrieves k most relevant rules using semantic search."""
347
+ if not _initialized: initialize_memory_system()
348
+ if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
349
+ return []
350
+ try:
351
+ query_embedding = _embedder.encode([query], convert_to_tensor=False)
352
+ query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
353
+
354
+ if query_embedding_np.shape[1] != _dimension: return []
355
+
356
+ distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
357
+ results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
358
+ logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
359
+ return results
360
+ except Exception as e:
361
+ logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
362
+ return []
363
 
364
  def remove_rule_entry(rule_text_to_delete: str) -> bool:
365
+ """Removes a rule from backend and rebuilds FAISS for rules."""
366
  global _rules_items_list, _faiss_rules_index
367
  if not _initialized: initialize_memory_system()
368
  if not _embedder or not _faiss_rules_index: return False
369
+
370
  rule_text_to_delete = rule_text_to_delete.strip()
371
  if rule_text_to_delete not in _rules_items_list:
372
+ return False # Not found
373
+
374
  try:
375
  _rules_items_list.remove(rule_text_to_delete)
376
+ _rules_items_list.sort() # Maintain sorted order
377
+
378
+ # Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
379
  new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
380
  if _rules_items_list:
381
  embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
382
  embeddings_np = np.array(embeddings, dtype=np.float32)
383
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
384
  new_faiss_rules_index.add(embeddings_np)
385
+ else: # Should not happen if list is consistent
386
+ logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
387
+ # Attempt to revert _rules_items_list (add back the rule)
388
  _rules_items_list.append(rule_text_to_delete)
389
  _rules_items_list.sort()
390
+ return False # Indicate failure
391
  _faiss_rules_index = new_faiss_rules_index
392
+
393
+ # Remove from persistent storage
394
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
395
  with _get_sqlite_connection() as conn:
396
  conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
397
  conn.commit()
398
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
399
  Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
400
+
401
+ logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
402
  return True
403
  except Exception as e:
404
  logger.error(f"Error removing rule entry: {e}", exc_info=True)
405
+ # Potential partial failure, state might be inconsistent.
406
  return False
407
 
408
+ # --- Utility functions to get all data (for UI display, etc.) ---
409
  def get_all_rules_cached() -> list[str]:
410
  if not _initialized: initialize_memory_system()
411
  return list(_rules_items_list)
412
 
413
+ def get_all_memories_cached() -> list[dict]:
414
+ if not _initialized: initialize_memory_system()
415
+ # Convert JSON strings to dicts for easier use by UI
416
+ mem_dicts = []
417
+ for mem_json_str in _memory_items_list:
418
+ try: mem_dicts.append(json.loads(mem_json_str))
419
+ except: pass # Ignore parse errors for display
420
+ return mem_dicts
421
+
422
  def clear_all_memory_data_backend() -> bool:
423
+ """Clears all memories from backend and resets in-memory FAISS/list."""
424
+ global _memory_items_list, _faiss_memory_index
425
  if not _initialized: initialize_memory_system()
426
+
427
  success = True
428
  try:
429
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
430
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
431
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
432
+ # Deleting from HF usually means pushing an empty dataset
433
  Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
434
+
435
+ _memory_items_list = []
436
+ if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
437
+ logger.info("All memories cleared from backend and in-memory stores.")
438
  except Exception as e:
439
  logger.error(f"Error clearing all memory data: {e}")
440
  success = False
441
  return success
442
 
443
  def clear_all_rules_data_backend() -> bool:
444
+ """Clears all rules from backend and resets in-memory FAISS/list."""
445
  global _rules_items_list, _faiss_rules_index
446
  if not _initialized: initialize_memory_system()
447
+
448
  success = True
449
  try:
450
  if STORAGE_BACKEND == "SQLITE" and sqlite3:
451
  with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
452
  elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
453
  Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
454
+
455
  _rules_items_list = []
456
  if _faiss_rules_index: _faiss_rules_index.reset()
457
+ logger.info("All rules cleared from backend and in-memory stores.")
458
  except Exception as e:
459
  logger.error(f"Error clearing all rules data: {e}")
460
  success = False
461
  return success
462
 
463
+ # Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
464
+ FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
465
+ FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
466
+
467
+ def save_faiss_indices_to_disk():
468
+ if not _initialized or not faiss: return
469
+
470
+ faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
471
+ if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
472
+
473
+ if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
474
+ try:
475
+ faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
476
+ logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
477
+ except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
478
+
479
+ if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
480
+ try:
481
+ faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
482
+ logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
483
+ except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
484
+
485
+ def load_faiss_indices_from_disk():
486
+ global _faiss_memory_index, _faiss_rules_index
487
+ if not _initialized or not faiss: return
488
+
489
+ if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
490
+ try:
491
+ logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
492
+ _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
493
+ logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
494
+ # Consistency check: FAISS ntotal vs len(_memory_items_list)
495
+ if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
496
+ logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
497
+ except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
498
+
499
+ if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
500
+ try:
501
+ logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
502
+ _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
503
+ logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
504
+ if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
505
+ logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
506
+ except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")