Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,21 +6,29 @@ import subprocess
|
|
6 |
from datetime import datetime
|
7 |
import urllib.parse
|
8 |
import tempfile
|
|
|
|
|
9 |
|
10 |
-
from flask import Flask, request, render_template,
|
11 |
-
from werkzeug.utils import secure_filename
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
import requests
|
14 |
import pdfplumber
|
15 |
from pdf2image import convert_from_path, convert_from_bytes
|
16 |
import pytesseract
|
17 |
from PIL import Image
|
18 |
-
from huggingface_hub import HfApi, create_repo
|
19 |
|
20 |
# --- Flask App Initialization ---
|
21 |
app = Flask(__name__)
|
22 |
-
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir()
|
23 |
-
app.config['MAX_CONTENT_LENGTH'] =
|
24 |
|
25 |
# --- Logging Configuration ---
|
26 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
@@ -28,13 +36,19 @@ logger = logging.getLogger(__name__)
|
|
28 |
|
29 |
# --- Hugging Face Configuration ---
|
30 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
-
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted")
|
32 |
hf_api = HfApi()
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# --- PDF Processing Helper Functions (Adapted
|
36 |
|
37 |
def check_poppler():
|
|
|
38 |
try:
|
39 |
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
|
40 |
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
|
@@ -51,20 +65,37 @@ def check_poppler():
|
|
51 |
return False
|
52 |
|
53 |
def ensure_hf_dataset():
|
|
|
54 |
if not HF_TOKEN:
|
55 |
-
|
56 |
-
|
|
|
57 |
try:
|
58 |
repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
|
59 |
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
|
60 |
return repo_id_obj.repo_id
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
logger.error(f"Hugging Face dataset error: {str(e)}", exc_info=True)
|
64 |
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
|
65 |
|
66 |
|
67 |
-
def
|
|
|
|
|
68 |
repo_id_or_error = ensure_hf_dataset()
|
69 |
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
|
70 |
return repo_id_or_error
|
@@ -73,162 +104,199 @@ def upload_image_to_hf(image_pil, filename_base):
|
|
73 |
temp_image_path = None
|
74 |
try:
|
75 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
76 |
-
repo_filename = f"images/{filename_base}_{timestamp}.png"
|
77 |
-
|
78 |
-
# Save PIL image to a temporary file to upload
|
79 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
|
80 |
temp_image_path = tmp_file.name
|
81 |
image_pil.save(temp_image_path, format="PNG")
|
82 |
|
83 |
logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
|
84 |
file_url = hf_api.upload_file(
|
85 |
-
path_or_fileobj=temp_image_path,
|
86 |
-
|
87 |
-
repo_id=repo_id,
|
88 |
-
repo_type="dataset",
|
89 |
-
token=HF_TOKEN
|
90 |
)
|
91 |
logger.info(f"Successfully uploaded image: {file_url}")
|
92 |
return file_url
|
93 |
except Exception as e:
|
94 |
-
logger.error(f"Image upload error for {filename_base}: {str(e)}", exc_info=True)
|
95 |
-
return f"Error uploading image {filename_base}: {str(e)}"
|
96 |
finally:
|
97 |
if temp_image_path and os.path.exists(temp_image_path):
|
98 |
-
try:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
else:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
full_text = ""
|
122 |
-
for i, page in enumerate(pdf.pages):
|
123 |
-
page_text = page.extract_text(layout=True, x_density=1, y_density=1) or ""
|
124 |
-
full_text += page_text + "\n\n"
|
125 |
-
tables = page.extract_tables()
|
126 |
-
if tables:
|
127 |
-
for table_data in tables:
|
128 |
-
if table_data:
|
129 |
-
header = [" | ".join(str(cell) if cell is not None else "" for cell in table_data[0])]
|
130 |
-
separator = [" | ".join(["---"] * len(table_data[0]))]
|
131 |
-
body = [" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data[1:]]
|
132 |
-
table_md_lines = header + separator + body
|
133 |
-
full_text += f"**Table:**\n" + "\n".join(table_md_lines) + "\n\n"
|
134 |
-
logger.info("Text and table extraction successful.")
|
135 |
-
return full_text.strip()
|
136 |
-
except requests.RequestException as e:
|
137 |
-
logger.error(f"URL fetch error for text extraction: {str(e)}", exc_info=True)
|
138 |
-
return f"Error fetching PDF from URL: {str(e)}"
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Text extraction error: {str(e)}", exc_info=True)
|
141 |
-
return f"Error extracting text: {str(e)}"
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
try:
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
else:
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
except requests.RequestException as e:
|
165 |
-
logger.error(f"URL fetch error for image extraction: {str(e)}", exc_info=True)
|
166 |
-
return f"Error fetching PDF from URL for image extraction: {str(e)}"
|
167 |
except Exception as e:
|
168 |
-
logger.error(f"
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
def format_to_markdown(text_content, images_input):
|
173 |
-
markdown_output = "# Extracted PDF Content\n\n"
|
174 |
-
if text_content.startswith("Error"): # If text extraction itself failed
|
175 |
-
markdown_output += f"**Text Extraction Note:**\n{text_content}\n\n"
|
176 |
-
else:
|
177 |
-
text_content = re.sub(r'\n\s*\n+', '\n\n', text_content.strip())
|
178 |
-
lines = text_content.split('\n')
|
179 |
-
is_in_list = False
|
180 |
-
for line_text in lines:
|
181 |
-
line_stripped = line_text.strip()
|
182 |
-
if not line_stripped:
|
183 |
-
markdown_output += "\n"
|
184 |
-
is_in_list = False
|
185 |
-
continue
|
186 |
-
list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
|
187 |
-
is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100
|
188 |
-
if is_heading_candidate and not list_match:
|
189 |
-
markdown_output += f"## {line_stripped}\n\n"
|
190 |
-
is_in_list = False
|
191 |
-
elif list_match:
|
192 |
-
list_item_text = list_match.group(1)
|
193 |
-
markdown_output += f"- {list_item_text}\n"
|
194 |
-
is_in_list = True
|
195 |
-
else:
|
196 |
-
if is_in_list: markdown_output += "\n"
|
197 |
-
markdown_output += f"{line_text}\n\n"
|
198 |
-
is_in_list = False
|
199 |
-
markdown_output = re.sub(r'\n\s*\n+', '\n\n', markdown_output.strip()) + "\n\n"
|
200 |
-
|
201 |
-
if isinstance(images_input, list) and images_input:
|
202 |
-
markdown_output += "## Extracted Images\n\n"
|
203 |
-
if not HF_TOKEN:
|
204 |
-
markdown_output += "**Note:** `HF_TOKEN` not set. Images were extracted but not uploaded to Hugging Face Hub.\n\n"
|
205 |
-
|
206 |
-
for i, img_pil in enumerate(images_input):
|
207 |
-
ocr_text = ""
|
208 |
-
try:
|
209 |
-
ocr_text = pytesseract.image_to_string(img_pil).strip()
|
210 |
-
logger.info(f"OCR for image {i+1} successful.")
|
211 |
-
except Exception as ocr_e:
|
212 |
-
logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
|
213 |
-
ocr_text = f"OCR failed: {str(ocr_e)}"
|
214 |
-
|
215 |
-
if HF_TOKEN: # Only attempt upload if token is present
|
216 |
-
image_filename_base = f"extracted_image_{i+1}"
|
217 |
-
image_url_or_error = upload_image_to_hf(img_pil, image_filename_base)
|
218 |
-
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
|
219 |
-
markdown_output += f"\n"
|
220 |
-
else:
|
221 |
-
markdown_output += f"**Image {i+1} (Upload Error):** {str(image_url_or_error)}\n\n"
|
222 |
-
else: # No token, show placeholder or local info if we were saving them locally
|
223 |
-
markdown_output += f"**Image {i+1} (not uploaded due to missing HF_TOKEN)**\n"
|
224 |
-
|
225 |
-
if ocr_text:
|
226 |
-
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
|
227 |
-
|
228 |
-
elif isinstance(images_input, str) and images_input.startswith("Error"):
|
229 |
-
markdown_output += f"## Image Extraction Note\n\n{images_input}\n\n"
|
230 |
-
|
231 |
-
return markdown_output.strip()
|
232 |
|
233 |
# --- Flask Routes ---
|
234 |
|
@@ -236,114 +304,76 @@ def format_to_markdown(text_content, images_input):
|
|
236 |
def index():
|
237 |
return render_template('index.html')
|
238 |
|
239 |
-
@app.route('/process', methods=['POST'])
|
240 |
-
def
|
241 |
pdf_file = request.files.get('pdf_file')
|
242 |
pdf_url = request.form.get('pdf_url', '').strip()
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
if
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
logger.error(f"Image extraction resulted in error: {extracted_images}")
|
303 |
-
|
304 |
-
status_message += "\nFormatting to Markdown..."
|
305 |
-
logger.info(status_message)
|
306 |
-
markdown_output = format_to_markdown(extracted_text, extracted_images)
|
307 |
-
|
308 |
-
status_message = "Processing complete."
|
309 |
-
if isinstance(extracted_text, str) and extracted_text.startswith("Error"):
|
310 |
-
status_message += f" (Text extraction issues: {extracted_text.split(':', 1)[1].strip()})"
|
311 |
-
if isinstance(extracted_images, str) and extracted_images.startswith("Error"):
|
312 |
-
status_message += f" (Image extraction issues: {extracted_images.split(':', 1)[1].strip()})"
|
313 |
-
if not HF_TOKEN and isinstance(extracted_images, list) and extracted_images:
|
314 |
-
status_message += " (Note: HF_TOKEN not set, images not uploaded to Hub)"
|
315 |
-
|
316 |
-
|
317 |
-
except ValueError as ve:
|
318 |
-
logger.error(f"Input validation error: {str(ve)}")
|
319 |
-
error_message = str(ve)
|
320 |
-
status_message = "Processing failed."
|
321 |
-
except Exception as e:
|
322 |
-
logger.error(f"An unexpected error occurred during processing: {str(e)}", exc_info=True)
|
323 |
-
error_message = f"An unexpected error occurred: {str(e)}"
|
324 |
-
status_message = "Processing failed due to an unexpected error."
|
325 |
-
finally:
|
326 |
-
if temp_pdf_path and os.path.exists(temp_pdf_path):
|
327 |
-
try:
|
328 |
-
os.remove(temp_pdf_path)
|
329 |
-
logger.info(f"Removed temporary PDF: {temp_pdf_path}")
|
330 |
-
except OSError as ose:
|
331 |
-
logger.error(f"Error removing temporary PDF {temp_pdf_path}: {ose}")
|
332 |
-
|
333 |
-
return render_template('index.html',
|
334 |
-
markdown_output=markdown_output,
|
335 |
-
status_message=status_message,
|
336 |
-
error_message=error_message)
|
337 |
|
338 |
|
339 |
# --- Main Execution ---
|
340 |
if __name__ == '__main__':
|
341 |
-
|
342 |
-
# Poppler check at startup for local dev convenience
|
343 |
-
if not check_poppler():
|
344 |
logger.warning("Poppler utilities might not be installed correctly. PDF processing might fail.")
|
345 |
-
|
346 |
-
# Ensure UPLOAD_FOLDER exists
|
347 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
348 |
-
|
349 |
-
|
|
|
|
6 |
from datetime import datetime
|
7 |
import urllib.parse
|
8 |
import tempfile
|
9 |
+
import json # For streaming JSON messages
|
10 |
+
import time # For gevent.sleep
|
11 |
|
12 |
+
from flask import Flask, request, render_template, Response, stream_with_context
|
13 |
+
from werkzeug.utils import secure_filename
|
14 |
+
|
15 |
+
# Ensure gevent is imported and monkey patched if needed for other libraries
|
16 |
+
# that might not be gevent-friendly. For built-in libs and requests (with Gunicorn gevent worker),
|
17 |
+
# this is often handled by Gunicorn.
|
18 |
+
# from gevent import monkey
|
19 |
+
# monkey.patch_all() # Apply this early if you suspect issues with other libs
|
20 |
|
21 |
import requests
|
22 |
import pdfplumber
|
23 |
from pdf2image import convert_from_path, convert_from_bytes
|
24 |
import pytesseract
|
25 |
from PIL import Image
|
26 |
+
from huggingface_hub import HfApi, create_repo, HfHubHTTPError
|
27 |
|
28 |
# --- Flask App Initialization ---
|
29 |
app = Flask(__name__)
|
30 |
+
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir()
|
31 |
+
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50 MB limit for uploads, adjust as needed
|
32 |
|
33 |
# --- Logging Configuration ---
|
34 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
36 |
|
37 |
# --- Hugging Face Configuration ---
|
38 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
39 |
+
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted")
|
40 |
hf_api = HfApi()
|
41 |
|
42 |
+
# --- Helper to yield messages for streaming ---
|
43 |
+
def yield_message(type, data):
|
44 |
+
"""Helper to format messages as JSON strings for streaming."""
|
45 |
+
# Add a newline so client can easily split messages
|
46 |
+
return json.dumps({"type": type, **data}) + "\n"
|
47 |
|
48 |
+
# --- PDF Processing Helper Functions (Adapted for Streaming) ---
|
49 |
|
50 |
def check_poppler():
|
51 |
+
# (Same as before)
|
52 |
try:
|
53 |
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
|
54 |
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
|
|
|
65 |
return False
|
66 |
|
67 |
def ensure_hf_dataset():
|
68 |
+
# (Same as before, but logs info useful for streaming if an error occurs)
|
69 |
if not HF_TOKEN:
|
70 |
+
msg = "HF_TOKEN is not set. Cannot ensure Hugging Face dataset. Image uploads will fail."
|
71 |
+
logger.warning(msg)
|
72 |
+
return "Error: " + msg
|
73 |
try:
|
74 |
repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
|
75 |
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
|
76 |
return repo_id_obj.repo_id
|
77 |
+
except HfHubHTTPError as e:
|
78 |
+
if e.response.status_code == 409:
|
79 |
+
logger.info(f"Dataset repo '{HF_DATASET_REPO_NAME}' already exists.")
|
80 |
+
# Attempt to construct the full repo_id (namespace/repo_name)
|
81 |
+
try:
|
82 |
+
user_info = hf_api.whoami(token=HF_TOKEN)
|
83 |
+
namespace = user_info.get('name') if user_info else None
|
84 |
+
if namespace:
|
85 |
+
return f"{namespace}/{HF_DATASET_REPO_NAME}"
|
86 |
+
except Exception as whoami_e:
|
87 |
+
logger.error(f"Could not determine namespace for existing repo via whoami: {whoami_e}")
|
88 |
+
return f"hf://datasets/{HF_DATASET_REPO_NAME}" # Fallback, might not be full id
|
89 |
+
logger.error(f"Hugging Face dataset error (HTTP {e.response.status_code}): {str(e)}")
|
90 |
+
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
|
91 |
except Exception as e:
|
92 |
logger.error(f"Hugging Face dataset error: {str(e)}", exc_info=True)
|
93 |
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
|
94 |
|
95 |
|
96 |
+
def upload_image_to_hf_stream(image_pil, filename_base, page_num_for_log=""):
|
97 |
+
# (Adapted to potentially yield status during this sub-process if it were longer)
|
98 |
+
# For now, it's synchronous but part of the larger stream.
|
99 |
repo_id_or_error = ensure_hf_dataset()
|
100 |
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
|
101 |
return repo_id_or_error
|
|
|
104 |
temp_image_path = None
|
105 |
try:
|
106 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
107 |
+
repo_filename = f"images/{filename_base}_{page_num_for_log}_{timestamp}.png"
|
108 |
+
|
|
|
109 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
|
110 |
temp_image_path = tmp_file.name
|
111 |
image_pil.save(temp_image_path, format="PNG")
|
112 |
|
113 |
logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
|
114 |
file_url = hf_api.upload_file(
|
115 |
+
path_or_fileobj=temp_image_path, path_in_repo=repo_filename,
|
116 |
+
repo_id=repo_id, repo_type="dataset", token=HF_TOKEN
|
|
|
|
|
|
|
117 |
)
|
118 |
logger.info(f"Successfully uploaded image: {file_url}")
|
119 |
return file_url
|
120 |
except Exception as e:
|
121 |
+
logger.error(f"Image upload error for {filename_base}{page_num_for_log}: {str(e)}", exc_info=True)
|
122 |
+
return f"Error uploading image {filename_base}{page_num_for_log}: {str(e)}"
|
123 |
finally:
|
124 |
if temp_image_path and os.path.exists(temp_image_path):
|
125 |
+
try: os.remove(temp_image_path)
|
126 |
+
except OSError as ose: logger.error(f"Error removing temp image file {temp_image_path}: {ose}")
|
127 |
+
|
128 |
+
|
129 |
+
def format_page_text_to_markdown_chunk(page_text_content):
|
130 |
+
"""Formats a single page's text content into a markdown chunk.
|
131 |
+
More complex formatting logic can be applied here page by page.
|
132 |
+
"""
|
133 |
+
chunk_md = ""
|
134 |
+
# Normalize newlines: multiple consecutive newlines become a single blank line (two \n chars)
|
135 |
+
page_text_content = re.sub(r'\n\s*\n+', '\n\n', page_text_content.strip())
|
136 |
+
lines = page_text_content.split('\n')
|
137 |
+
is_in_list = False
|
138 |
+
for line_text in lines:
|
139 |
+
line_stripped = line_text.strip()
|
140 |
+
if not line_stripped:
|
141 |
+
chunk_md += "\n"
|
142 |
+
is_in_list = False
|
143 |
+
continue
|
144 |
+
list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
|
145 |
+
is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100
|
146 |
+
if is_heading_candidate and not list_match:
|
147 |
+
chunk_md += f"## {line_stripped}\n\n"
|
148 |
+
is_in_list = False
|
149 |
+
elif list_match:
|
150 |
+
list_item_text = list_match.group(1)
|
151 |
+
chunk_md += f"- {list_item_text}\n"
|
152 |
+
is_in_list = True
|
153 |
else:
|
154 |
+
if is_in_list: chunk_md += "\n"
|
155 |
+
chunk_md += f"{line_text}\n\n"
|
156 |
+
is_in_list = False
|
157 |
+
return re.sub(r'\n\s*\n+', '\n\n', chunk_md.strip()) + "\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
|
160 |
+
# --- Main PDF Processing Logic (Generator Function for Streaming) ---
|
161 |
+
|
162 |
+
def generate_pdf_conversion_stream(pdf_input_source_path_or_url):
|
163 |
+
"""
|
164 |
+
Processes the PDF incrementally and yields status messages and markdown content.
|
165 |
+
`pdf_input_source_path_or_url` is a local file path or a URL string.
|
166 |
+
"""
|
167 |
try:
|
168 |
+
# Initial Markdown Title
|
169 |
+
yield yield_message("markdown_replace", {"content": "# Extracted PDF Content\n\n"})
|
170 |
+
time.sleep(0.01) # Give gevent a chance to yield
|
171 |
+
|
172 |
+
# 1. Text and Table Extraction (Page by Page)
|
173 |
+
yield yield_message("status", {"message": "Opening PDF for text extraction..."})
|
174 |
+
time.sleep(0.01)
|
175 |
+
|
176 |
+
source_is_url = isinstance(pdf_input_source_path_or_url, str) and \
|
177 |
+
pdf_input_source_path_or_url.startswith(('http://', 'https://'))
|
178 |
+
|
179 |
+
pdf_handle_for_text = None
|
180 |
+
pdf_bytes_for_images = None # Store bytes if downloaded from URL for image extraction
|
181 |
+
|
182 |
+
if source_is_url:
|
183 |
+
try:
|
184 |
+
response = requests.get(pdf_input_source_path_or_url, stream=True, timeout=60) # Increased timeout
|
185 |
+
response.raise_for_status()
|
186 |
+
pdf_bytes_for_images = response.content # Read all content for pdf2image
|
187 |
+
pdf_handle_for_text = io.BytesIO(pdf_bytes_for_images) # Use BytesIO for pdfplumber
|
188 |
+
yield yield_message("status", {"message": f"PDF downloaded from URL ({len(pdf_bytes_for_images)/1024:.2f} KB)."})
|
189 |
+
time.sleep(0.01)
|
190 |
+
except requests.RequestException as e:
|
191 |
+
logger.error(f"URL fetch error for PDF processing: {str(e)}", exc_info=True)
|
192 |
+
yield yield_message("error", {"message": f"Error fetching PDF from URL: {str(e)}"})
|
193 |
+
return # Stop generation
|
194 |
+
else: # Local file path
|
195 |
+
pdf_handle_for_text = pdf_input_source_path_or_url # pdfplumber takes path
|
196 |
+
|
197 |
+
total_text_pages = 0
|
198 |
+
try:
|
199 |
+
with pdfplumber.open(pdf_handle_for_text) as pdf:
|
200 |
+
total_text_pages = len(pdf.pages)
|
201 |
+
yield yield_message("status", {"message": f"Found {total_text_pages} page(s) for text extraction."})
|
202 |
+
time.sleep(0.01)
|
203 |
+
|
204 |
+
for i, page in enumerate(pdf.pages):
|
205 |
+
yield yield_message("status", {"message": f"Extracting text from page {i+1}/{total_text_pages}..."})
|
206 |
+
time.sleep(0.01) # gevent yield
|
207 |
+
|
208 |
+
page_text = page.extract_text(layout=True, x_density=1, y_density=1) or ""
|
209 |
+
|
210 |
+
page_tables_md = ""
|
211 |
+
tables = page.extract_tables()
|
212 |
+
if tables:
|
213 |
+
for table_idx, table_data in enumerate(tables):
|
214 |
+
if table_data:
|
215 |
+
yield yield_message("status", {"message": f" Processing table {table_idx+1} on page {i+1}..."})
|
216 |
+
header = [" | ".join(str(cell) if cell is not None else "" for cell in table_data[0])]
|
217 |
+
separator = [" | ".join(["---"] * len(table_data[0]))]
|
218 |
+
body = [" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data[1:]]
|
219 |
+
table_md_lines = header + separator + body
|
220 |
+
page_tables_md += f"**Table (Page {i+1}):**\n" + "\n".join(table_md_lines) + "\n\n"
|
221 |
+
|
222 |
+
formatted_page_text_md = format_page_text_to_markdown_chunk(page_text)
|
223 |
+
|
224 |
+
yield yield_message("markdown_chunk", {"content": formatted_page_text_md})
|
225 |
+
if page_tables_md:
|
226 |
+
yield yield_message("markdown_chunk", {"content": page_tables_md})
|
227 |
+
time.sleep(0.01) # gevent yield
|
228 |
+
except Exception as e:
|
229 |
+
logger.error(f"Error during PDF text/table extraction: {str(e)}", exc_info=True)
|
230 |
+
yield yield_message("error", {"message": f"Error during text extraction: {str(e)}"})
|
231 |
+
# Continue to image extraction if possible, or return based on severity
|
232 |
+
|
233 |
+
# 2. Image Extraction and OCR
|
234 |
+
if not check_poppler():
|
235 |
+
yield yield_message("error", {"message": "Poppler (for image extraction) not found or not working."})
|
236 |
else:
|
237 |
+
yield yield_message("status", {"message": "Starting image extraction..."})
|
238 |
+
yield yield_message("markdown_chunk", {"content": "## Extracted Images\n\n"})
|
239 |
+
if not HF_TOKEN:
|
240 |
+
yield yield_message("markdown_chunk", {"content": "**Note:** `HF_TOKEN` not set. Images will be described but not uploaded.\n\n"})
|
241 |
+
|
242 |
+
time.sleep(0.01)
|
243 |
+
extracted_pil_images = []
|
244 |
+
try:
|
245 |
+
if source_is_url and pdf_bytes_for_images:
|
246 |
+
# Use the already downloaded bytes
|
247 |
+
extracted_pil_images = convert_from_bytes(pdf_bytes_for_images, dpi=150) # Lower DPI for speed/memory
|
248 |
+
elif not source_is_url: # local file path
|
249 |
+
extracted_pil_images = convert_from_path(pdf_input_source_path_or_url, dpi=150)
|
250 |
+
|
251 |
+
yield yield_message("status", {"message": f"Found {len(extracted_pil_images)} image(s) in PDF (these are rasterized pages for now)."})
|
252 |
+
time.sleep(0.01)
|
253 |
+
|
254 |
+
# TODO: Implement more granular image extraction if pdf2image supports it,
|
255 |
+
# or if you integrate a library that can extract embedded images directly.
|
256 |
+
# For now, convert_from_path/bytes often gives full pages as images.
|
257 |
+
|
258 |
+
for i, img_pil in enumerate(extracted_pil_images):
|
259 |
+
page_num_for_log = f"page_{i+1}" # Assuming one image per page from convert_from_path
|
260 |
+
yield yield_message("status", {"message": f"Processing image {i+1}/{len(extracted_pil_images)} (OCR & Upload)..."})
|
261 |
+
time.sleep(0.01)
|
262 |
+
|
263 |
+
ocr_text = ""
|
264 |
+
try:
|
265 |
+
ocr_text = pytesseract.image_to_string(img_pil).strip()
|
266 |
+
if ocr_text:
|
267 |
+
yield yield_message("status", {"message": f" OCR successful for image {i+1}."})
|
268 |
+
except Exception as ocr_e:
|
269 |
+
logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
|
270 |
+
ocr_text = f"OCR failed: {str(ocr_e)}"
|
271 |
+
|
272 |
+
image_md_chunk = ""
|
273 |
+
if HF_TOKEN:
|
274 |
+
image_url_or_error = upload_image_to_hf_stream(img_pil, "pdf_image", page_num_for_log)
|
275 |
+
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
|
276 |
+
image_md_chunk += f"\n"
|
277 |
+
yield yield_message("status", {"message": f" Image {i+1} uploaded."})
|
278 |
+
else:
|
279 |
+
image_md_chunk += f"**Image {i+1} (Upload Error):** {str(image_url_or_error)}\n\n"
|
280 |
+
yield yield_message("error", {"message": f"Failed to upload image {i+1}: {str(image_url_or_error)}"})
|
281 |
+
else:
|
282 |
+
image_md_chunk += f"**Image {i+1} (not uploaded due to missing HF_TOKEN)**\n"
|
283 |
+
|
284 |
+
if ocr_text:
|
285 |
+
image_md_chunk += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
|
286 |
+
|
287 |
+
yield yield_message("image_md", {"content": image_md_chunk})
|
288 |
+
time.sleep(0.01) # gevent yield
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
logger.error(f"Error during image extraction/processing: {str(e)}", exc_info=True)
|
292 |
+
yield yield_message("error", {"message": f"Error during image extraction: {str(e)}"})
|
293 |
|
294 |
+
yield yield_message("final_status", {"message": "All processing stages complete."})
|
295 |
+
|
|
|
|
|
|
|
296 |
except Exception as e:
|
297 |
+
logger.error(f"Unhandled error in PDF conversion stream: {str(e)}", exc_info=True)
|
298 |
+
yield yield_message("error", {"message": f"Critical processing error: {str(e)}"})
|
299 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
# --- Flask Routes ---
|
302 |
|
|
|
304 |
def index():
|
305 |
return render_template('index.html')
|
306 |
|
307 |
+
@app.route('/process-stream', methods=['POST'])
|
308 |
+
def process_pdf_stream():
|
309 |
pdf_file = request.files.get('pdf_file')
|
310 |
pdf_url = request.form.get('pdf_url', '').strip()
|
311 |
|
312 |
+
temp_pdf_path = None # To store path of uploaded file for cleanup
|
313 |
+
pdf_input_source_for_generator = None
|
314 |
+
|
315 |
+
def stream_processor():
|
316 |
+
nonlocal temp_pdf_path # Make it accessible in this inner function for cleanup
|
317 |
+
nonlocal pdf_input_source_for_generator
|
318 |
+
|
319 |
+
try:
|
320 |
+
if pdf_file and pdf_file.filename:
|
321 |
+
if not pdf_file.filename.lower().endswith('.pdf'):
|
322 |
+
yield yield_message("error", {"message": "Uploaded file is not a PDF."})
|
323 |
+
return
|
324 |
+
|
325 |
+
filename = secure_filename(pdf_file.filename)
|
326 |
+
# Save to a temporary file (ensure UPLOAD_FOLDER is writable by app user)
|
327 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
328 |
+
fd, temp_pdf_path = tempfile.mkstemp(suffix=".pdf", prefix="upload_", dir=app.config['UPLOAD_FOLDER'])
|
329 |
+
os.close(fd)
|
330 |
+
pdf_file.save(temp_pdf_path)
|
331 |
+
logger.info(f"Uploaded PDF saved to temporary path: {temp_pdf_path}")
|
332 |
+
pdf_input_source_for_generator = temp_pdf_path
|
333 |
+
yield yield_message("status", {"message": f"Processing uploaded PDF: {filename}"})
|
334 |
+
time.sleep(0.01)
|
335 |
+
|
336 |
+
elif pdf_url:
|
337 |
+
unquoted_url = urllib.parse.unquote(pdf_url)
|
338 |
+
if not (unquoted_url.startswith('http://') or unquoted_url.startswith('https://')):
|
339 |
+
yield yield_message("error", {"message": "Invalid URL scheme. Must be http or https."})
|
340 |
+
return
|
341 |
+
# Consider a light check for .pdf extension, but content-type is more reliable
|
342 |
+
|
343 |
+
pdf_input_source_for_generator = unquoted_url
|
344 |
+
yield yield_message("status", {"message": f"Preparing to process PDF from URL: {unquoted_url}"})
|
345 |
+
time.sleep(0.01)
|
346 |
+
else:
|
347 |
+
yield yield_message("error", {"message": "No PDF file uploaded and no PDF URL provided."})
|
348 |
+
return
|
349 |
+
|
350 |
+
# Yield from the main generator
|
351 |
+
for message_part in generate_pdf_conversion_stream(pdf_input_source_for_generator):
|
352 |
+
yield message_part
|
353 |
+
# time.sleep(0.01) # Allow gevent to switch context, important for streaming
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
logger.error(f"Error setting up stream or in initial validation: {str(e)}", exc_info=True)
|
357 |
+
yield yield_message("error", {"message": f"Setup error: {str(e)}"})
|
358 |
+
finally:
|
359 |
+
if temp_pdf_path and os.path.exists(temp_pdf_path):
|
360 |
+
try:
|
361 |
+
os.remove(temp_pdf_path)
|
362 |
+
logger.info(f"Cleaned up temporary PDF: {temp_pdf_path}")
|
363 |
+
yield yield_message("status", {"message": f"Cleaned up temporary file."})
|
364 |
+
except OSError as ose:
|
365 |
+
logger.error(f"Error removing temporary PDF {temp_pdf_path}: {ose}")
|
366 |
+
yield yield_message("error", {"message": f"Could not clean temp file: {ose}"})
|
367 |
+
|
368 |
+
# Using stream_with_context for proper handling of request context within the generator
|
369 |
+
return Response(stream_with_context(stream_processor()), mimetype='application/x-ndjson')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
|
372 |
# --- Main Execution ---
|
373 |
if __name__ == '__main__':
|
374 |
+
if not check_poppler(): # Check Poppler at startup for local dev
|
|
|
|
|
375 |
logger.warning("Poppler utilities might not be installed correctly. PDF processing might fail.")
|
|
|
|
|
376 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
377 |
+
# For local dev, Flask's built-in server is fine. Gunicorn handles production.
|
378 |
+
# The 'threaded=True' or using gevent server locally can also help test streaming.
|
379 |
+
app.run(host='0.0.0.0', port=int(os.getenv("PORT", 7860)), debug=True, threaded=True)
|