Spaces:
Running
Running
File size: 12,304 Bytes
2870322 f966038 5f00446 5d92716 f966038 5d92716 f43722b 5d92716 f966038 5d92716 2870322 f966038 2870322 f966038 5d92716 f966038 2870322 5d92716 2870322 5d92716 2870322 f966038 2870322 f966038 2870322 5d92716 f966038 2870322 5d92716 f43722b 2870322 5d92716 2870322 5d92716 f966038 2870322 5d92716 2870322 f966038 2870322 f966038 2870322 5d92716 2870322 5d92716 2870322 f43722b 2870322 5d92716 2870322 f966038 2870322 f43722b 2870322 f43722b 2870322 5d92716 2870322 5d92716 2870322 5d92716 2870322 5d92716 2870322 5d92716 2870322 5d92716 2870322 5d92716 2870322 f43722b 2870322 f43722b 2870322 f43722b 5d92716 2870322 5d92716 2870322 f43722b 2870322 5d92716 f43722b 5d92716 f966038 2870322 f966038 2870322 5d92716 2870322 f966038 2870322 f43722b 2870322 5d92716 f43722b 5d92716 2870322 5d92716 2870322 5d92716 2870322 f966038 f43722b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Save this file as app.py in the root of the cloned Surya repository
import gradio as gr
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from huggingface_hub import snapshot_download
import yaml
import numpy as np
from PIL import Image
import sunpy.visualization.colormaps as sunpy_cm
import os
import glob
import warnings
import logging
import matplotlib.pyplot as plt
# --- Use the official Surya modules now that we are in the repo ---
from surya.datasets.helio import HelioNetCDFDataset, inverse_transform_single_channel
from surya.models.helio_spectformer import HelioSpectFormer
from surya.utils.data import build_scalers, custom_collate_fn
# Suppress verbose logging and warnings for a cleaner UI
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Global cache to store expensive-to-load objects ---
APP_CACHE = {
"model": None,
"config": None,
"scalers": None,
"full_results": None, # Will store all prediction results
"device": "cuda" if torch.cuda.is_available() else "cpu",
}
# SDO channels from the test script for the dropdown menu
SDO_CHANNELS = [
"aia94", "aia131", "aia171", "aia193", "aia211", "aia304", "aia335",
"aia1600", "hmi_m", "hmi_bx", "hmi_by", "hmi_bz", "hmi_v",
]
# --- 1. Setup, Download, and Model Loading (adapting fixtures from test_surya.py) ---
def setup_and_load_model(progress=gr.Progress()):
"""
Handles all initial setup: downloading data, loading configs, and initializing the model.
This function will populate the APP_CACHE.
"""
if APP_CACHE["model"] is not None:
logger.info("Model and data already loaded. Skipping setup.")
return
# --- Part A: Download data (from download_data fixture) ---
progress(0.1, desc="Downloading model weights and config...")
snapshot_download(
repo_id="nasa-ibm-ai4science/Surya-1.0",
local_dir="data/Surya-1.0",
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"],
)
progress(0.3, desc="Downloading validation data for 2014-01-07...")
snapshot_download(
repo_id="nasa-ibm-ai4science/Surya-1.0_validation_data",
repo_type="dataset",
local_dir="data/Surya-1.0_validation_data",
allow_patterns="20140107_1[5-9]??.nc",
)
# --- Part B: Load Config and Scalers (from config & scalers fixtures) ---
progress(0.5, desc="Loading configuration and data scalers...")
with open("data/Surya-1.0/config.yaml") as fp:
config = yaml.safe_load(fp)
APP_CACHE["config"] = config
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
# --- Part C: Initialize and load model (from model fixture and test function) ---
progress(0.7, desc="Initializing model architecture...")
model_config = config["model"]
model = HelioSpectFormer(
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
in_chans=len(config["data"]["sdo_channels"]), embed_dim=model_config["embed_dim"],
time_embedding={"type": "linear", "time_dim": len(config["data"]["time_delta_input_minutes"])},
depth=model_config["depth"], n_spectral_blocks=model_config["n_spectral_blocks"],
num_heads=model_config["num_heads"], mlp_ratio=model_config["mlp_ratio"],
drop_rate=model_config["drop_rate"], dtype=torch.bfloat16,
window_size=model_config["window_size"], dp_rank=model_config["dp_rank"],
learned_flow=model_config["learned_flow"], use_latitude_in_learned_flow=model_config["learned_flow"],
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
)
progress(0.8, desc=f"Loading model weights to {APP_CACHE['device']}...")
path_weights = "data/Surya-1.0/surya.366m.v1.pt"
weights = torch.load(path_weights, map_location=torch.device(APP_CACHE["device"]))
model.load_state_dict(weights, strict=True)
model.to(APP_CACHE["device"])
model.eval()
n_params = sum(p.numel() for p in model.parameters()) / 1e6
logger.info(f"Surya FM: {n_params:.2f}M parameters loaded.")
APP_CACHE["model"] = model
# --- 2. Inference Logic (adapting the test loop) ---
def run_full_forecast():
"""
Runs inference on the entire validation dataset and stores results.
"""
if APP_CACHE["full_results"] is not None:
return APP_CACHE["full_results"]
model = APP_CACHE["model"]
config = APP_CACHE["config"]
device = APP_CACHE["device"]
# Create the index file needed by the dataset loader
os.makedirs("tests", exist_ok=True)
with open("tests/test_surya_index.csv", "w") as f:
f.write("path\n")
search_path = os.path.join("data/Surya-1.0_validation_data", "**", "*.nc")
for nc_file in sorted(glob.glob(search_path, recursive=True)):
f.write(f"{nc_file}\n")
# Setup dataset and dataloader (from dataset & dataloader fixtures)
dataset = HelioNetCDFDataset(
index_path="tests/test_surya_index.csv",
time_delta_input_minutes=config["data"]["time_delta_input_minutes"],
time_delta_target_minutes=config["data"]["time_delta_target_minutes"],
n_input_timestamps=len(config["data"]["time_delta_input_minutes"]),
rollout_steps=1, channels=config["data"]["sdo_channels"],
scalers=APP_CACHE["scalers"], phase="valid",
)
dataloader = DataLoader(
dataset, shuffle=False, batch_size=1, num_workers=2,
pin_memory=True, collate_fn=custom_collate_fn
)
all_results = []
with torch.no_grad():
for batch_data, batch_metadata in dataloader:
input_batch = {k: v.to(device) for k, v in batch_data.items() if k in ["ts", "time_delta_input"]}
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
prediction = model(input_batch)
# Store the relevant tensors on CPU for later visualization
result = {
"input": input_batch["ts"].cpu(),
"prediction": prediction.cpu(),
"target": batch_data["forecast"].cpu(),
"input_timestamp": np.datetime_as_string(batch_metadata["timestamps_input"][0][-1], unit='s'),
"target_timestamp": np.datetime_as_string(batch_metadata["timestamps_targets"][0][0], unit='s'),
}
all_results.append(result)
APP_CACHE["full_results"] = all_results
# Cache scalers needed for visualization
APP_CACHE["scalers_vis"] = dataset.transformation_inputs()
return all_results
# --- 3. Visualization Logic ---
def generate_visualization(results, timestep_index, channel_name):
"""
Generates PIL images for a specific timestep and channel from the results.
"""
if not results:
return None, None, None, "No results available. Please run the forecast.", ""
timestep_data = results[timestep_index]
c_idx = SDO_CHANNELS.index(channel_name)
means, stds, epsilons, sl_scale_factors = APP_CACHE["scalers_vis"]
# Denormalize data for visualization
input_slice = inverse_transform_single_channel(
timestep_data["input"][0, c_idx, -1].numpy(),
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
)
pred_slice = inverse_transform_single_channel(
timestep_data["prediction"][0, c_idx].numpy(),
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
)
target_slice = inverse_transform_single_channel(
timestep_data["target"][0, c_idx, 0].numpy(),
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
)
# Convert to PIL Images using appropriate colormaps
vmax = np.quantile(target_slice, 0.995)
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
def to_pil(data):
data_clipped = np.clip(data, 0, vmax)
data_norm = data_clipped / vmax
return Image.fromarray((cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)).transpose(Image.Transpose.TRANSPOSE)
status_text = (f"Displaying Timestep {timestep_index+1}/{len(results)}\n"
f"Input: {timestep_data['input_timestamp']} | Forecast/Target: {timestep_data['target_timestamp']}")
return to_pil(input_slice), to_pil(pred_slice), to_pil(target_slice), status_text
# --- 4. Gradio Controller Functions ---
def forecast_controller(progress=gr.Progress(track_tqdm=True)):
"""Main function for the 'Generate Forecast' button."""
progress(0, desc="Starting setup...")
setup_and_load_model(progress)
logger.info("Running forecast on all validation timesteps...")
progress(0.9, desc="Running inference on validation data...")
results = run_full_forecast()
logger.info(f"Forecast complete. {len(results)} timesteps processed.")
# Generate the first visualization
img_in, img_pred, img_target, status = generate_visualization(results, 0, SDO_CHANNELS[2]) # Default to aia171
# Update the slider to be interactive and have the correct number of steps
slider_update = gr.Slider(minimum=1, maximum=len(results), step=1, value=1, interactive=True,
label="Forecast Timestep")
return results, img_in, img_pred, img_target, status, slider_update
def update_visualization_controller(results, timestep, channel):
"""Called when a slider or dropdown is changed."""
return generate_visualization(results, timestep - 1, channel)
# --- 5. Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# State object to hold the results of the full inference run
state_results = gr.State()
gr.Markdown(
"""
<div align='center'>
# ☀️ Surya: Live Model Demo ☀️
### An Interactive Interface for NASA's Heliophysics Foundation Model
This demo runs the **actual** Surya model on its official validation data for **2014-01-07**.
<br>
**Instructions:** 1. Click 'Generate Forecast'. 2. Use the controls to explore the results.
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
run_button = gr.Button("🔮 1. Generate Full Forecast", variant="primary")
status_box = gr.Textbox(label="Status", interactive=False, value="Ready.", lines=2)
channel_selector = gr.Dropdown(
choices=SDO_CHANNELS, value="aia171", label="🛰️ 2. Select SDO Channel"
)
timestep_slider = gr.Slider(
minimum=1, maximum=8, step=1, value=1, interactive=False, label="Forecast Timestep"
)
with gr.Column(scale=3):
with gr.Row():
input_display = gr.Image(label="Last Input", height=512, width=512, interactive=False)
prediction_display = gr.Image(label="Model Forecast", height=512, width=512, interactive=False)
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
# --- Event Handlers ---
run_button.click(
fn=forecast_controller,
outputs=[state_results, input_display, prediction_display, target_display, status_box, timestep_slider]
)
# When the user changes the channel or timestep, call the visualization update function
channel_selector.change(
fn=update_visualization_controller,
inputs=[state_results, timestep_slider, channel_selector],
outputs=[input_display, prediction_display, target_display, status_box]
)
timestep_slider.change(
fn=update_visualization_controller,
inputs=[state_results, timestep_slider, channel_selector],
outputs=[input_display, prediction_display, target_display, status_box]
)
if __name__ == "__main__":
demo.launch(debug=True) |