surya-demo / app.py
broadfield-dev's picture
Update app.py
59f507f verified
raw
history blame
13.6 kB
# Save this file as in the root of the cloned Surya repository
import gradio as gr
import torch
from huggingface_hub import snapshot_download
import yaml
import numpy as np
from PIL import Image
import sunpy.map
import sunpy.net.attrs as a
from sunpy.net import Fido
from astropy.wcs import WCS
import astropy.units as u
from reproject import reproject_interp
import os
import warnings
import logging
import datetime
import matplotlib.pyplot as plt
import sunpy.visualization.colormaps as sunpy_cm
import traceback
# --- Use the official Surya modules ---
from surya.models.helio_spectformer import HelioSpectFormer
from surya.utils.data import build_scalers
from surya.datasets.helio import inverse_transform_single_channel
# --- Configuration ---
warnings.filterwarnings("ignore", category=UserWarning, module='sunpy')
warnings.filterwarnings("ignore", category=FutureWarning)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global cache for model, config, etc.
APP_CACHE = {}
SDO_CHANNELS_MAP = {
"aia94": (a.Wavelength(94 * u.angstrom), a.Sample(12 * u.s)),
"aia131": (a.Wavelength(131 * u.angstrom), a.Sample(12 * u.s)),
"aia171": (a.Wavelength(171 * u.angstrom), a.Sample(12 * u.s)),
"aia193": (a.Wavelength(193 * u.angstrom), a.Sample(12 * u.s)),
"aia211": (a.Wavelength(211 * u.angstrom), a.Sample(12 * u.s)),
"aia304": (a.Wavelength(304 * u.angstrom), a.Sample(12 * u.s)),
"aia335": (a.Wavelength(335 * u.angstrom), a.Sample(12 * u.s)),
"aia1600": (a.Wavelength(1600 * u.angstrom), a.Sample(24 * u.s)),
"hmi_m": (a.Physobs("intensity"), a.Sample(45 * u.s)),
"hmi_bx": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)),
"hmi_by": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_bz": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_v": (a.Physobs("los_velocity"), a.Sample(45 * u.s)),
}
SDO_CHANNELS = list(SDO_CHANNELS_MAP.keys())
# --- 1. Model Loading and Setup ---
def setup_and_load_model():
if "model" in APP_CACHE:
yield "Model already loaded. Skipping setup."
return
yield "Downloading model files (first run only)..."
snapshot_download(repo_id="nasa-ibm-ai4science/Surya-1.0", local_dir="data/Surya-1.0",
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"])
yield "Loading configuration and data scalers..."
with open("data/Surya-1.0/config.yaml") as fp:
config = yaml.safe_load(fp)
APP_CACHE["config"] = config
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
yield "Initializing model architecture..."
model_config = config["model"]
model = HelioSpectFormer(
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
in_chans=len(config["data"]["sdo_channels"]), embed_dim=model_config["embed_dim"],
time_embedding={"type": "linear", "time_dim": len(config["data"]["time_delta_input_minutes"])},
depth=model_config["depth"], n_spectral_blocks=model_config["n_spectral_blocks"],
num_heads=model_config["num_heads"], mlp_ratio=model_config["mlp_ratio"],
drop_rate=model_config["drop_rate"], dtype=torch.bfloat16,
window_size=model_config["window_size"], dp_rank=model_config["dp_rank"],
learned_flow=model_config["learned_flow"], use_latitude_in_learned_flow=model_config["learned_flow"],
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
)
device = "cuda" if torch.cuda.is_available() else "cpu"
APP_CACHE["device"] = device
yield f"Loading model weights to {device}..."
weights = torch.load(f"data/Surya-1.0/surya.366m.v1.pt", map_location=torch.device(device))
model.load_state_dict(weights, strict=True)
model.to(device)
model.eval()
APP_CACHE["model"] = model
yield "โœ… Model setup complete."
# --- 2. Live Data Fetching and Preprocessing (as a generator) ---
def fetch_and_process_sdo_data(target_dt):
config = APP_CACHE["config"]
img_size = config["model"]["img_size"]
input_deltas = config["data"]["time_delta_input_minutes"]
# *** FIX: Access target_delta as an integer, not a list. Removed [0]. ***
target_delta = config["data"]["time_delta_target_minutes"]
input_times = [target_dt + datetime.timedelta(minutes=m) for m in input_deltas]
target_time = target_dt + datetime.timedelta(minutes=target_delta)
all_times = sorted(list(set(input_times + [target_time])))
data_maps = {}
total_downloads = len(all_times) * len(SDO_CHANNELS)
downloads_done = 0
yield f"Starting download of {total_downloads} data files..."
for t in all_times:
data_maps[t] = {}
for i, (channel, (physobs, sample)) in enumerate(SDO_CHANNELS_MAP.items()):
downloads_done += 1
yield f"Downloading [{downloads_done}/{total_downloads}]: {channel} for {t.strftime('%Y-%m-%d %H:%M')}..."
if channel in ["hmi_by", "hmi_bz"]:
if data_maps[t].get("hmi_bx"): data_maps[t][channel] = data_maps[t]["hmi_bx"]
continue
time_attr = a.Time(t - datetime.timedelta(minutes=10), t + datetime.timedelta(minutes=10))
instrument = a.Instrument.hmi if "hmi" in channel else a.Instrument.aia
query = Fido.search(time_attr, instrument, physobs, sample)
if not query: raise ValueError(f"No data found for {channel} at {t}")
files = Fido.fetch(query[0, 0], path="./data/sdo_cache")
data_maps[t][channel] = sunpy.map.Map(files[0])
yield "โœ… All files downloaded. Starting preprocessing..."
output_wcs = WCS(naxis=2)
output_wcs.wcs.crpix = [(img_size + 1) / 2, (img_size + 1) / 2]
output_wcs.wcs.cdelt = np.array([-1.2, 1.2]) * u.arcsec
output_wcs.wcs.crval = [0, 0] * u.arcsec
output_wcs.wcs.ctype = ['HPLN-TAN', 'HPLT-TAN']
scaler = APP_CACHE["scalers"]
processed_tensors = {}
for t, channel_maps in data_maps.items():
channel_tensors = []
for i, channel in enumerate(SDO_CHANNELS):
smap = channel_maps[channel]
reprojected_data, _ = reproject_interp(smap, output_wcs, shape_out=(img_size, img_size))
exp_time = smap.meta.get('exptime', 1.0)
if exp_time is None or exp_time <= 0: exp_time = 1.0
norm_data = reprojected_data / exp_time
scaled_data = scaler.transform(norm_data, c_idx=i)
channel_tensors.append(torch.from_numpy(scaled_data.astype(np.float32)))
processed_tensors[t] = torch.stack(channel_tensors)
yield "โœ… Preprocessing complete."
input_tensor_list = [processed_tensors[t] for t in input_times]
input_tensor = torch.stack(input_tensor_list, dim=1).unsqueeze(0)
target_map = data_maps[target_time]
last_input_map = data_maps[input_times[-1]]
yield (input_tensor, last_input_map, target_map)
# --- 3. Inference and Visualization ---
def run_inference(input_tensor):
model = APP_CACHE["model"]
device = APP_CACHE["device"]
time_deltas = APP_CACHE["config"]["data"]["time_delta_input_minutes"]
time_delta_tensor = torch.tensor(time_deltas, dtype=torch.float32).unsqueeze(0).to(device)
input_batch = {"ts": input_tensor.to(device), "time_delta_input": time_delta_tensor}
with torch.no_grad():
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
prediction = model(input_batch)
return prediction.cpu()
def generate_visualization(last_input_map, prediction_tensor, target_map, channel_name):
if last_input_map is None: return None, None, None
c_idx = SDO_CHANNELS.index(channel_name)
scaler = APP_CACHE["scalers"]
all_means, all_stds, all_epsilons, all_sl_scale_factors = scaler.get_params()
mean, std, epsilon, sl_scale_factor = all_means[c_idx], all_stds[c_idx], all_epsilons[c_idx], all_sl_scale_factors[c_idx]
pred_slice = inverse_transform_single_channel(
prediction_tensor[0, c_idx].numpy(), mean=mean, std=std, epsilon=epsilon, sl_scale_factor=sl_scale_factor
)
vmax = np.quantile(np.nan_to_num(target_map[channel_name].data), 0.995)
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
def to_pil(data, flip=False):
data_clipped = np.nan_to_num(data)
data_clipped = np.clip(data_clipped, 0, vmax)
data_norm = data_clipped / vmax if vmax > 0 else data_clipped
colored = (cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)
img = Image.fromarray(colored)
return img.transpose(Image.Transpose.FLIP_TOP_BOTTOM) if flip else img
return to_pil(last_input_map[channel_name].data, flip=True), to_pil(pred_slice, flip=True), to_pil(target_map[channel_name].data, flip=True)
# --- 4. Gradio UI and Controllers ---
def forecast_controller(dt_str):
yield {
log_box: gr.update(value="Starting forecast...", visible=True),
run_button: gr.update(interactive=False),
datetime_input: gr.update(interactive=False),
results_group: gr.update(visible=False)
}
try:
if not dt_str: raise gr.Error("Please select a date and time.")
for status in setup_and_load_model():
yield { log_box: status }
target_dt = datetime.datetime.fromisoformat(dt_str)
data_pipeline = fetch_and_process_sdo_data(target_dt)
while True:
try:
status = next(data_pipeline)
if isinstance(status, tuple):
input_tensor, last_input_map, target_map = status
break
yield { log_box: status }
except StopIteration:
raise gr.Error("Data processing pipeline finished unexpectedly.")
yield { log_box: "Running AI model inference..." }
prediction_tensor = run_inference(input_tensor)
yield { log_box: "Generating final visualizations..." }
img_in, img_pred, img_target = generate_visualization(last_input_map, prediction_tensor, target_map, "aia171")
yield {
log_box: f"โœ… Forecast complete for {target_dt.isoformat()}.",
results_group: gr.update(visible=True),
state_last_input: last_input_map,
state_prediction: prediction_tensor,
state_target: target_map,
input_display: img_in,
prediction_display: img_pred,
target_display: img_target,
}
except Exception as e:
error_str = traceback.format_exc()
logger.error(f"An error occurred: {e}\n{error_str}")
yield { log_box: f"โŒ ERROR: {e}\n\nTraceback:\n{error_str}" }
finally:
yield {
run_button: gr.update(interactive=True),
datetime_input: gr.update(interactive=True)
}
# --- 5. Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
state_last_input = gr.State()
state_prediction = gr.State()
state_target = gr.State()
gr.Markdown(
"""
<div align='center'>
# โ˜€๏ธ Surya: Live Forecast Demo โ˜€๏ธ
### Generate a real forecast for any recent date using NASA's Heliophysics Model.
**Instructions:**
1. Pick a date and time (at least 3 hours in the past).
2. Click 'Generate Forecast'. **This will be slow (5-15 minutes) as it downloads live data.**
3. Once complete, select different channels to explore the multi-spectrum forecast.
</div>
"""
)
with gr.Row():
datetime_input = gr.Textbox(
label="Enter Forecast Start Time (YYYY-MM-DD HH:MM:SS)",
value=(datetime.datetime.now() - datetime.timedelta(hours=3)).strftime("%Y-%m-%d %H:%M:%S")
)
run_button = gr.Button("๐Ÿ”ฎ Generate Forecast", variant="primary")
log_box = gr.Textbox(label="Log", interactive=False, visible=False, lines=5, max_lines=10)
with gr.Group(visible=False) as results_group:
channel_selector = gr.Dropdown(
choices=SDO_CHANNELS, value="aia171", label="๐Ÿ›ฐ๏ธ Select SDO Channel to Visualize"
)
with gr.Row():
input_display = gr.Image(label="Last Input to Model", height=512, width=512, interactive=False)
prediction_display = gr.Image(label="Surya's Forecast", height=512, width=512, interactive=False)
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
run_button.click(
fn=forecast_controller,
inputs=[datetime_input],
outputs=[
log_box, run_button, datetime_input, results_group,
state_last_input, state_prediction, state_target,
input_display, prediction_display, target_display
]
)
channel_selector.change(
fn=generate_visualization,
inputs=[state_last_input, state_prediction, state_target, channel_selector],
outputs=[input_display, prediction_display, target_display]
)
if __name__ == "__main__":
os.makedirs("./data/sdo_cache", exist_ok=True)
demo.launch(debug=True)