surya-demo / app.py
broadfield-dev's picture
Update app.py
d6afb4c verified
raw
history blame
13 kB
# Save this file as app.py in the root of the cloned Surya repository
import gradio as gr
import torch
from huggingface_hub import snapshot_download
import yaml
import numpy as np
from PIL import Image
import sunpy.map
import sunpy.net.attrs as a
from sunpy.net import Fido
from astropy.wcs import WCS
import astropy.units as u
from reproject import reproject_interp # Correct import statement
import os
import warnings
import logging
import datetime
import matplotlib.pyplot as plt
import sunpy.visualization.colormaps as sunpy_cm
# --- Use the official Surya modules ---
from surya.models.helio_spectformer import HelioSpectFormer
from surya.utils.data import build_scalers, inverse_transform_single_channel
# --- Configuration ---
warnings.filterwarnings("ignore", category=UserWarning, module='sunpy')
warnings.filterwarnings("ignore", category=FutureWarning)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global cache for model, config, etc.
APP_CACHE = {}
SDO_CHANNELS_MAP = {
"aia94": (a.Wavelength(94, 94, "angstrom"), a.Sample(12 * u.s)),
"aia131": (a.Wavelength(131, 131, "angstrom"), a.Sample(12 * u.s)),
"aia171": (a.Wavelength(171, 171, "angstrom"), a.Sample(12 * u.s)),
"aia193": (a.Wavelength(193, 193, "angstrom"), a.Sample(12 * u.s)),
"aia211": (a.Wavelength(211, 211, "angstrom"), a.Sample(12 * u.s)),
"aia304": (a.Wavelength(304, 304, "angstrom"), a.Sample(12 * u.s)),
"aia335": (a.Wavelength(335, 335, "angstrom"), a.Sample(12 * u.s)),
"aia1600": (a.Wavelength(1600, 1600, "angstrom"), a.Sample(24 * u.s)),
"hmi_m": (a.Physobs("intensity"), a.Sample(45 * u.s)),
"hmi_bx": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)),
"hmi_by": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_bz": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_v": (a.Physobs("los_velocity"), a.Sample(45 * u.s)),
}
SDO_CHANNELS = list(SDO_CHANNELS_MAP.keys())
# --- 1. Model Loading and Setup ---
def setup_and_load_model(progress=gr.Progress()):
if "model" in APP_CACHE:
return
progress(0.1, desc="Downloading model files (first run only)...")
snapshot_download(repo_id="nasa-ibm-ai4science/Surya-1.0", local_dir="data/Surya-1.0",
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"])
progress(0.5, desc="Loading configuration and scalers...")
with open("data/Surya-1.0/config.yaml") as fp:
config = yaml.safe_load(fp)
APP_CACHE["config"] = config
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
progress(0.7, desc="Initializing and loading model...")
model_config = config["model"]
model = HelioSpectFormer(
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
in_chans=len(config["data"]["sdo_channels"]), embed_dim=model_config["embed_dim"],
time_embedding={"type": "linear", "time_dim": len(config["data"]["time_delta_input_minutes"])},
depth=model_config["depth"], n_spectral_blocks=model_config["n_spectral_blocks"],
num_heads=model_config["num_heads"], mlp_ratio=model_config["mlp_ratio"],
drop_rate=model_config["drop_rate"], dtype=torch.bfloat16,
window_size=model_config["window_size"], dp_rank=model_config["dp_rank"],
learned_flow=model_config["learned_flow"], use_latitude_in_learned_flow=model_config["learned_flow"],
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
)
device = "cuda" if torch.cuda.is_available() else "cpu"
APP_CACHE["device"] = device
weights = torch.load(f"data/Surya-1.0/surya.366m.v1.pt", map_location=torch.device(device))
model.load_state_dict(weights, strict=True)
model.to(device)
model.eval()
APP_CACHE["model"] = model
logger.info("Model setup complete.")
# --- 2. Live Data Fetching and Preprocessing ---
def fetch_and_process_sdo_data(target_dt, progress):
config = APP_CACHE["config"]
img_size = config["model"]["img_size"][0]
input_deltas = config["data"]["time_delta_input_minutes"]
target_delta = config["data"]["time_delta_target_minutes"][0]
input_times = [target_dt + datetime.timedelta(minutes=m) for m in input_deltas]
target_time = target_dt + datetime.timedelta(minutes=target_delta)
all_times = sorted(list(set(input_times + [target_time])))
data_maps = {}
total_downloads = len(all_times) * len(SDO_CHANNELS_MAP)
downloads_done = 0
for t in all_times:
data_maps[t] = {}
for i, (channel, (physobs, sample)) in enumerate(SDO_CHANNELS_MAP.items()):
progress(downloads_done / total_downloads, desc=f"Downloading {channel} for {t.strftime('%H:%M')}...")
instrument = a.Instrument.hmi if "hmi" in channel else a.Instrument.aia
if channel in ["hmi_by", "hmi_bz"]:
if data_maps[t].get("hmi_bx"): data_maps[t][channel] = data_maps[t]["hmi_bx"]
continue
time_attr = a.Time(t - datetime.timedelta(minutes=10), t + datetime.timedelta(minutes=10))
search_query = [time_attr, physobs, sample]
# AIA and HMI queries are slightly different
if "aia" in channel:
search_query.append(a.Instrument.aia)
else:
search_query.append(a.Instrument.hmi)
query = Fido.search(*search_query)
if not query: raise ValueError(f"No data found for {channel} at {t}")
files = Fido.fetch(query[0, 0], path="./data/sdo_cache")
data_maps[t][channel] = sunpy.map.Map(files[0])
downloads_done += 1
output_wcs = WCS(naxis=2)
output_wcs.wcs.crpix = [(img_size + 1) / 2, (img_size + 1) / 2]
output_wcs.wcs.cdelt = np.array([-1.2, 1.2]) * u.arcsec
output_wcs.wcs.crval = [0, 0] * u.arcsec
output_wcs.wcs.ctype = ['HPLN-TAN', 'HPLT-TAN']
processed_tensors = {}
total_processing = len(all_times) * len(SDO_CHANNELS)
processing_done = 0
for t, channel_maps in data_maps.items():
channel_tensors = []
for i, channel in enumerate(SDO_CHANNELS):
progress(processing_done / total_processing, desc=f"Processing {channel} for {t.strftime('%H:%M')}...")
smap = channel_maps[channel]
reprojected_data, _ = reproject_interp(smap, output_wcs, shape_out=(img_size, img_size))
exp_time = smap.meta.get('exptime', 1.0)
if exp_time is None or exp_time <= 0: exp_time = 1.0
norm_data = reprojected_data / exp_time
scaler = APP_CACHE["scalers"][channel]
scaled_data = scaler.transform(norm_data)
channel_tensors.append(torch.from_numpy(scaled_data.astype(np.float32)))
processing_done += 1
processed_tensors[t] = torch.stack(channel_tensors)
input_tensor_list = [processed_tensors[t] for t in input_times]
input_tensor = torch.stack(input_tensor_list, dim=1).unsqueeze(0)
target_map = data_maps[target_time]
last_input_map = data_maps[input_times[-1]]
return input_tensor, last_input_map, target_map
# --- 3. Inference and Visualization ---
def run_inference(input_tensor):
logger.info("Running model inference...")
model = APP_CACHE["model"]
device = APP_CACHE["device"]
time_deltas = APP_CACHE["config"]["data"]["time_delta_input_minutes"]
time_delta_tensor = torch.tensor(time_deltas, dtype=torch.float32).unsqueeze(0).to(device)
input_batch = {"ts": input_tensor.to(device), "time_delta_input": time_delta_tensor}
with torch.no_grad():
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
prediction = model(input_batch)
logger.info("Inference complete.")
return prediction.cpu()
def generate_visualization(last_input_map, prediction_tensor, target_map, channel_name):
if last_input_map is None:
return None, None, None
c_idx = SDO_CHANNELS.index(channel_name)
# Process Prediction
means, stds, epsilons, sl_scale_factors = APP_CACHE["scalers"][SDO_CHANNELS[0]].get_params()
pred_slice = inverse_transform_single_channel(
prediction_tensor[0, c_idx].numpy(),
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
)
vmax = np.quantile(np.nan_to_num(target_map[channel_name].data), 0.995)
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
def to_pil(data, flip=False):
data_clipped = np.nan_to_num(data)
data_clipped = np.clip(data_clipped, 0, vmax)
data_norm = data_clipped / vmax if vmax > 0 else data_clipped
colored = (cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)
img = Image.fromarray(colored)
return img.transpose(Image.Transpose.FLIP_TOP_BOTTOM) if flip else img
return to_pil(last_input_map[channel_name].data), to_pil(pred_slice, flip=True), to_pil(target_map[channel_name].data)
# --- 4. Gradio UI and Controllers ---
def forecast_controller(dt_str, progress=gr.Progress(track_tqdm=True)):
try:
if not dt_str:
raise gr.Error("Please select a date and time.")
progress(0, desc="Initializing...")
setup_and_load_model(progress)
target_dt = datetime.datetime.fromisoformat(dt_str)
logger.info(f"Starting forecast for target time: {target_dt}")
input_tensor, last_input_map, target_map = fetch_and_process_sdo_data(target_dt, progress)
prediction_tensor = run_inference(input_tensor)
img_in, img_pred, img_target = generate_visualization(last_input_map, prediction_tensor, target_map, "aia171")
status = f"Forecast complete for {target_dt.isoformat()}. Ready to explore channels."
logger.info(status)
return (last_input_map, prediction_tensor, target_map,
img_in, img_pred, img_target, status, gr.update(visible=True))
except Exception as e:
logger.error(f"An error occurred: {e}", exc_info=True)
raise gr.Error(f"Failed to generate forecast. Error: {e}")
def update_visualization_controller(last_input_map, prediction_tensor, target_map, channel_name):
if last_input_map is None:
return None, None, None
return generate_visualization(last_input_map, prediction_tensor, target_map, channel_name)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
state_last_input = gr.State()
state_prediction = gr.State()
state_target = gr.State()
gr.Markdown(
"""
<div align='center'>
# ☀️ Surya: Live Forecast Demo ☀️
### Generate a real forecast for any recent date using NASA's Heliophysics Model.
**Instructions:**
1. Pick a date and time (at least 1 hour in the past).
2. Click 'Generate Forecast'. **This will be slow (5-15 minutes) as it downloads live data.**
3. Once complete, select different channels to explore the multi-spectrum forecast.
</div>
"""
)
with gr.Row():
datetime_input = gr.Textbox(label="Enter Forecast Start Time (YYYY-MM-DD HH:MM:SS)",
value=(datetime.datetime.now() - datetime.timedelta(hours=3)).strftime("%Y-%m-%d %H:%M:%S"))
run_button = gr.Button("🔮 Generate Forecast", variant="primary")
with gr.Group(visible=False) as results_group:
status_box = gr.Textbox(label="Status", interactive=False)
channel_selector = gr.Dropdown(choices=SDO_CHANNELS, value="aia171", label="🛰️ Select SDO Channel")
with gr.Row():
input_display = gr.Image(label="Last Input to Model", height=512, width=512, interactive=False)
prediction_display = gr.Image(label="Surya's Forecast", height=512, width=512, interactive=False)
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
run_button.click(
fn=forecast_controller,
inputs=[datetime_input],
outputs=[state_last_input, state_prediction, state_target,
input_display, prediction_display, target_display, status_box, results_group]
)
channel_selector.change(
fn=update_visualization_controller,
inputs=[state_last_input, state_prediction, state_target, channel_selector],
outputs=[input_display, prediction_display, target_display]
)
if __name__ == "__main__":
os.makedirs("./data/sdo_cache", exist_ok=True)
demo.launch(debug=True)