Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,81 +2,71 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
from torch.utils.data import DataLoader
|
7 |
from huggingface_hub import snapshot_download
|
8 |
import yaml
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
-
import sunpy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import os
|
13 |
-
import glob
|
14 |
import warnings
|
15 |
import logging
|
|
|
16 |
import matplotlib.pyplot as plt
|
|
|
17 |
|
18 |
-
# --- Use the official Surya modules
|
19 |
-
from surya.datasets.helio import HelioNetCDFDataset, inverse_transform_single_channel
|
20 |
from surya.models.helio_spectformer import HelioSpectFormer
|
21 |
-
from surya.utils.data import build_scalers,
|
22 |
|
23 |
-
#
|
24 |
warnings.filterwarnings("ignore")
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
-
#
|
29 |
-
APP_CACHE = {
|
30 |
-
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
}
|
|
|
36 |
|
37 |
-
#
|
38 |
-
SDO_CHANNELS = [
|
39 |
-
"aia94", "aia131", "aia171", "aia193", "aia211", "aia304", "aia335",
|
40 |
-
"aia1600", "hmi_m", "hmi_bx", "hmi_by", "hmi_bz", "hmi_v",
|
41 |
-
]
|
42 |
-
|
43 |
-
# --- 1. Setup, Download, and Model Loading (adapting fixtures from test_surya.py) ---
|
44 |
-
|
45 |
def setup_and_load_model(progress=gr.Progress()):
|
46 |
-
""
|
47 |
-
Handles all initial setup: downloading data, loading configs, and initializing the model.
|
48 |
-
This function will populate the APP_CACHE.
|
49 |
-
"""
|
50 |
-
if APP_CACHE["model"] is not None:
|
51 |
-
logger.info("Model and data already loaded. Skipping setup.")
|
52 |
return
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
repo_id="nasa-ibm-ai4science/Surya-1.0",
|
58 |
-
local_dir="data/Surya-1.0",
|
59 |
-
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"],
|
60 |
-
)
|
61 |
-
progress(0.3, desc="Downloading validation data for 2014-01-07...")
|
62 |
-
snapshot_download(
|
63 |
-
repo_id="nasa-ibm-ai4science/Surya-1.0_validation_data",
|
64 |
-
repo_type="dataset",
|
65 |
-
local_dir="data/Surya-1.0_validation_data",
|
66 |
-
allow_patterns="20140107_1[5-9]??.nc",
|
67 |
-
)
|
68 |
|
69 |
-
|
70 |
-
progress(0.5, desc="Loading configuration and data scalers...")
|
71 |
with open("data/Surya-1.0/config.yaml") as fp:
|
72 |
config = yaml.safe_load(fp)
|
73 |
APP_CACHE["config"] = config
|
74 |
-
|
75 |
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
|
76 |
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
|
77 |
-
|
78 |
-
|
79 |
-
progress(0.7, desc="Initializing model architecture...")
|
80 |
model_config = config["model"]
|
81 |
model = HelioSpectFormer(
|
82 |
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
|
@@ -90,194 +80,214 @@ def setup_and_load_model(progress=gr.Progress()):
|
|
90 |
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
|
91 |
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
|
92 |
)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
weights = torch.load(path_weights, map_location=torch.device(APP_CACHE["device"]))
|
97 |
model.load_state_dict(weights, strict=True)
|
98 |
-
model.to(
|
99 |
model.eval()
|
100 |
-
|
101 |
-
n_params = sum(p.numel() for p in model.parameters()) / 1e6
|
102 |
-
logger.info(f"Surya FM: {n_params:.2f}M parameters loaded.")
|
103 |
APP_CACHE["model"] = model
|
|
|
104 |
|
105 |
-
# --- 2.
|
106 |
-
|
107 |
-
def run_full_forecast():
|
108 |
-
"""
|
109 |
-
Runs inference on the entire validation dataset and stores results.
|
110 |
-
"""
|
111 |
-
if APP_CACHE["full_results"] is not None:
|
112 |
-
return APP_CACHE["full_results"]
|
113 |
-
|
114 |
-
model = APP_CACHE["model"]
|
115 |
config = APP_CACHE["config"]
|
116 |
-
|
117 |
-
|
118 |
-
# Create the index file needed by the dataset loader
|
119 |
-
os.makedirs("tests", exist_ok=True)
|
120 |
-
with open("tests/test_surya_index.csv", "w") as f:
|
121 |
-
f.write("path\n")
|
122 |
-
search_path = os.path.join("data/Surya-1.0_validation_data", "**", "*.nc")
|
123 |
-
for nc_file in sorted(glob.glob(search_path, recursive=True)):
|
124 |
-
f.write(f"{nc_file}\n")
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
with torch.no_grad():
|
142 |
-
for batch_data, batch_metadata in dataloader:
|
143 |
-
input_batch = {k: v.to(device) for k, v in batch_data.items() if k in ["ts", "time_delta_input"]}
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
c_idx = SDO_CHANNELS.index(channel_name)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
input_slice = inverse_transform_single_channel(
|
178 |
-
timestep_data["input"][0, c_idx, -1].numpy(),
|
179 |
-
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
|
180 |
-
)
|
181 |
pred_slice = inverse_transform_single_channel(
|
182 |
-
|
183 |
-
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
|
184 |
-
)
|
185 |
-
target_slice = inverse_transform_single_channel(
|
186 |
-
timestep_data["target"][0, c_idx, 0].numpy(),
|
187 |
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
|
188 |
)
|
189 |
-
|
190 |
-
#
|
191 |
-
vmax = np.quantile(
|
192 |
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
|
193 |
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
|
194 |
|
195 |
-
def to_pil(data):
|
196 |
-
data_clipped = np.
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
return to_pil(input_slice), to_pil(pred_slice), to_pil(target_slice), status_text
|
204 |
|
205 |
-
# --- 4. Gradio Controller Functions ---
|
206 |
-
|
207 |
-
def forecast_controller(progress=gr.Progress(track_tqdm=True)):
|
208 |
-
"""Main function for the 'Generate Forecast' button."""
|
209 |
-
progress(0, desc="Starting setup...")
|
210 |
-
setup_and_load_model(progress)
|
211 |
-
|
212 |
-
logger.info("Running forecast on all validation timesteps...")
|
213 |
-
progress(0.9, desc="Running inference on validation data...")
|
214 |
-
results = run_full_forecast()
|
215 |
-
logger.info(f"Forecast complete. {len(results)} timesteps processed.")
|
216 |
-
|
217 |
-
# Generate the first visualization
|
218 |
-
img_in, img_pred, img_target, status = generate_visualization(results, 0, SDO_CHANNELS[2]) # Default to aia171
|
219 |
-
|
220 |
-
# Update the slider to be interactive and have the correct number of steps
|
221 |
-
slider_update = gr.Slider(minimum=1, maximum=len(results), step=1, value=1, interactive=True,
|
222 |
-
label="Forecast Timestep")
|
223 |
-
|
224 |
-
return results, img_in, img_pred, img_target, status, slider_update
|
225 |
-
|
226 |
-
def update_visualization_controller(results, timestep, channel):
|
227 |
-
"""Called when a slider or dropdown is changed."""
|
228 |
-
return generate_visualization(results, timestep - 1, channel)
|
229 |
-
|
230 |
-
|
231 |
-
# --- 5. Gradio UI Layout ---
|
232 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
233 |
-
# State
|
234 |
-
|
|
|
|
|
235 |
|
236 |
gr.Markdown(
|
237 |
"""
|
238 |
<div align='center'>
|
239 |
-
# ☀️ Surya: Live
|
240 |
-
###
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
244 |
</div>
|
245 |
"""
|
246 |
)
|
247 |
|
248 |
with gr.Row():
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
)
|
258 |
-
|
259 |
-
|
260 |
-
input_display = gr.Image(label="Last Input", height=512, width=512, interactive=False)
|
261 |
-
prediction_display = gr.Image(label="Model Forecast", height=512, width=512, interactive=False)
|
262 |
-
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
|
263 |
|
264 |
-
# --- Event Handlers ---
|
265 |
run_button.click(
|
266 |
fn=forecast_controller,
|
267 |
-
|
|
|
|
|
268 |
)
|
269 |
|
270 |
-
# When the user changes the channel or timestep, call the visualization update function
|
271 |
channel_selector.change(
|
272 |
fn=update_visualization_controller,
|
273 |
-
inputs=[
|
274 |
-
outputs=[input_display, prediction_display, target_display
|
275 |
-
)
|
276 |
-
timestep_slider.change(
|
277 |
-
fn=update_visualization_controller,
|
278 |
-
inputs=[state_results, timestep_slider, channel_selector],
|
279 |
-
outputs=[input_display, prediction_display, target_display, status_box]
|
280 |
)
|
281 |
|
282 |
if __name__ == "__main__":
|
|
|
|
|
283 |
demo.launch(debug=True)
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
5 |
from torch.utils.data import DataLoader
|
6 |
from huggingface_hub import snapshot_download
|
7 |
import yaml
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
+
import sunpy.map
|
11 |
+
import sunpy.net.attrs as a
|
12 |
+
from sunpy.net import Fido
|
13 |
+
from sunpy.coordinates import Helioprojective
|
14 |
+
from astropy.coordinates import SkyCoord
|
15 |
+
from astropy.wcs import WCS
|
16 |
+
import astropy.units as u
|
17 |
+
from reproject import reproject_interp
|
18 |
import os
|
|
|
19 |
import warnings
|
20 |
import logging
|
21 |
+
import datetime
|
22 |
import matplotlib.pyplot as plt
|
23 |
+
import sunpy.visualization.colormaps as sunpy_cm
|
24 |
|
25 |
+
# --- Use the official Surya modules ---
|
|
|
26 |
from surya.models.helio_spectformer import HelioSpectFormer
|
27 |
+
from surya.utils.data import build_scalers, inverse_transform_single_channel
|
28 |
|
29 |
+
# --- Configuration ---
|
30 |
warnings.filterwarnings("ignore")
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
34 |
+
# Global cache for model, config, etc.
|
35 |
+
APP_CACHE = {}
|
36 |
+
SDO_CHANNELS_MAP = {
|
37 |
+
"aia94": (a.Wavelength(94, 94, "angstrom"), a.Sample(12 * u.s)),
|
38 |
+
"aia131": (a.Wavelength(131, 131, "angstrom"), a.Sample(12 * u.s)),
|
39 |
+
"aia171": (a.Wavelength(171, 171, "angstrom"), a.Sample(12 * u.s)),
|
40 |
+
"aia193": (a.Wavelength(193, 193, "angstrom"), a.Sample(12 * u.s)),
|
41 |
+
"aia211": (a.Wavelength(211, 211, "angstrom"), a.Sample(12 * u.s)),
|
42 |
+
"aia304": (a.Wavelength(304, 304, "angstrom"), a.Sample(12 * u.s)),
|
43 |
+
"aia335": (a.Wavelength(335, 335, "angstrom"), a.Sample(12 * u.s)),
|
44 |
+
"aia1600": (a.Wavelength(1600, 1600, "angstrom"), a.Sample(24 * u.s)),
|
45 |
+
"hmi_m": (a.Physobs("intensity"), a.Sample(45 * u.s)),
|
46 |
+
"hmi_bx": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)),
|
47 |
+
"hmi_by": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
|
48 |
+
"hmi_bz": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
|
49 |
+
"hmi_v": (a.Physobs("los_velocity"), a.Sample(45 * u.s)),
|
50 |
}
|
51 |
+
SDO_CHANNELS = list(SDO_CHANNELS_MAP.keys())
|
52 |
|
53 |
+
# --- 1. Model Loading and Setup ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def setup_and_load_model(progress=gr.Progress()):
|
55 |
+
if "model" in APP_CACHE:
|
|
|
|
|
|
|
|
|
|
|
56 |
return
|
57 |
|
58 |
+
progress(0.1, desc="Downloading model files (first run only)...")
|
59 |
+
snapshot_download(repo_id="nasa-ibm-ai4science/Surya-1.0", local_dir="data/Surya-1.0",
|
60 |
+
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
progress(0.5, desc="Loading configuration and scalers...")
|
|
|
63 |
with open("data/Surya-1.0/config.yaml") as fp:
|
64 |
config = yaml.safe_load(fp)
|
65 |
APP_CACHE["config"] = config
|
|
|
66 |
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
|
67 |
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
|
68 |
+
|
69 |
+
progress(0.7, desc="Initializing and loading model...")
|
|
|
70 |
model_config = config["model"]
|
71 |
model = HelioSpectFormer(
|
72 |
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
|
|
|
80 |
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
|
81 |
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
|
82 |
)
|
83 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
84 |
+
APP_CACHE["device"] = device
|
85 |
+
weights = torch.load(f"data/Surya-1.0/surya.366m.v1.pt", map_location=torch.device(device))
|
|
|
86 |
model.load_state_dict(weights, strict=True)
|
87 |
+
model.to(device)
|
88 |
model.eval()
|
|
|
|
|
|
|
89 |
APP_CACHE["model"] = model
|
90 |
+
logger.info("Model setup complete.")
|
91 |
|
92 |
+
# --- 2. Live Data Fetching and Preprocessing ---
|
93 |
+
def fetch_and_process_sdo_data(target_dt, progress):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
config = APP_CACHE["config"]
|
95 |
+
img_size = config["model"]["img_size"][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Define time windows for input and target (ground truth)
|
98 |
+
input_deltas = config["data"]["time_delta_input_minutes"]
|
99 |
+
target_delta = config["data"]["time_delta_target_minutes"][0]
|
100 |
+
input_times = [target_dt + datetime.timedelta(minutes=m) for m in input_deltas]
|
101 |
+
target_time = target_dt + datetime.timedelta(minutes=target_delta)
|
102 |
+
all_times = sorted(list(set(input_times + [target_time])))
|
103 |
+
|
104 |
+
# Download data for all required timestamps
|
105 |
+
data_maps = {}
|
106 |
+
total_downloads = len(all_times) * len(SDO_CHANNELS_MAP)
|
107 |
+
downloads_done = 0
|
108 |
+
for t in all_times:
|
109 |
+
data_maps[t] = {}
|
110 |
+
for i, (channel, (physobs, sample)) in enumerate(SDO_CHANNELS_MAP.items()):
|
111 |
+
progress(downloads_done / total_downloads, desc=f"Downloading {channel} for {t.strftime('%H:%M')}...")
|
|
|
|
|
|
|
112 |
|
113 |
+
# HMI vector fields are not standard products, use LoS as a placeholder for demo
|
114 |
+
instrument = a.Instrument.hmi if "hmi" in channel else a.Instrument.aia
|
115 |
+
if channel in ["hmi_by", "hmi_bz"]:
|
116 |
+
if data_maps[t].get("hmi_bx"): data_maps[t][channel] = data_maps[t]["hmi_bx"]
|
117 |
+
continue
|
118 |
+
|
119 |
+
time_attr = a.Time(t - datetime.timedelta(minutes=10), t + datetime.timedelta(minutes=10))
|
120 |
+
query = Fido.search(time_attr, a.Instrument.aia, physobs, sample) if "aia" in channel else Fido.search(time_attr, a.Instrument.hmi, physobs, sample)
|
121 |
|
122 |
+
if not query: raise ValueError(f"No data found for {channel} at {t}")
|
123 |
+
files = Fido.fetch(query[0, 0], path="./data/sdo_cache")
|
124 |
+
data_maps[t][channel] = sunpy.map.Map(files[0])
|
125 |
+
downloads_done += 1
|
126 |
+
|
127 |
+
# Create target WCS for reprojection
|
128 |
+
output_wcs = WCS(naxis=2)
|
129 |
+
output_wcs.wcs.crpix = [(img_size + 1) / 2, (img_size + 1) / 2]
|
130 |
+
output_wcs.wcs.cdelt = np.array([-1.2, 1.2]) * u.arcsec
|
131 |
+
output_wcs.wcs.crval = [0, 0] * u.arcsec
|
132 |
+
output_wcs.wcs.ctype = ['HPLN-TAN', 'HPLT-TAN']
|
133 |
+
|
134 |
+
# Process data
|
135 |
+
processed_tensors = {}
|
136 |
+
for t, channel_maps in data_maps.items():
|
137 |
+
channel_tensors = []
|
138 |
+
for i, channel in enumerate(SDO_CHANNELS):
|
139 |
+
progress(i / len(SDO_CHANNELS), desc=f"Processing {channel} for {t.strftime('%H:%M')}...")
|
140 |
+
smap = channel_maps[channel]
|
141 |
+
|
142 |
+
# Reproject to common grid
|
143 |
+
reprojected_data, _ = reproject_interp(smap, output_wcs, shape_out=(img_size, img_size))
|
144 |
+
|
145 |
+
# Normalize by exposure time and apply signed-log transform
|
146 |
+
exp_time = smap.meta.get('exptime', 1.0)
|
147 |
+
if exp_time <= 0: exp_time = 1.0
|
148 |
+
norm_data = reprojected_data / exp_time
|
149 |
+
|
150 |
+
# Apply the same scaling as the training pipeline
|
151 |
+
scaler = APP_CACHE["scalers"][channel]
|
152 |
+
scaled_data = scaler.transform(norm_data)
|
153 |
+
channel_tensors.append(torch.from_numpy(scaled_data.astype(np.float32)))
|
154 |
+
processed_tensors[t] = torch.stack(channel_tensors)
|
155 |
+
|
156 |
+
# Assemble final input and target tensors
|
157 |
+
input_tensor_list = [processed_tensors[t] for t in input_times]
|
158 |
+
input_tensor = torch.stack(input_tensor_list, dim=1).unsqueeze(0) # Add batch dim
|
159 |
+
target_map = data_maps[target_time] # Return raw map for ground truth vis
|
160 |
+
last_input_map = data_maps[input_times[-1]]
|
161 |
+
|
162 |
+
return input_tensor, last_input_map, target_map
|
163 |
+
|
164 |
+
# --- 3. Inference and Visualization ---
|
165 |
+
def run_inference(input_tensor):
|
166 |
+
logger.info("Running model inference...")
|
167 |
+
model = APP_CACHE["model"]
|
168 |
+
device = APP_CACHE["device"]
|
169 |
+
|
170 |
+
time_deltas = APP_CACHE["config"]["data"]["time_delta_input_minutes"]
|
171 |
+
time_delta_tensor = torch.tensor(time_deltas, dtype=torch.float32).unsqueeze(0).to(device)
|
172 |
+
|
173 |
+
input_batch = {"ts": input_tensor.to(device), "time_delta_input": time_delta_tensor}
|
174 |
+
|
175 |
+
with torch.no_grad():
|
176 |
+
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
|
177 |
+
prediction = model(input_batch)
|
178 |
+
logger.info("Inference complete.")
|
179 |
+
return prediction.cpu()
|
180 |
+
|
181 |
+
def generate_visualization(last_input_map, prediction_tensor, target_map, channel_name):
|
182 |
+
if last_input_map is None:
|
183 |
+
return None, None, None
|
184 |
+
|
185 |
c_idx = SDO_CHANNELS.index(channel_name)
|
186 |
+
|
187 |
+
# Process Prediction
|
188 |
+
means, stds, epsilons, sl_scale_factors = APP_CACHE["scalers"][SDO_CHANNELS[0]].get_params()
|
|
|
|
|
|
|
|
|
189 |
pred_slice = inverse_transform_single_channel(
|
190 |
+
prediction_tensor[0, c_idx].numpy(),
|
|
|
|
|
|
|
|
|
191 |
mean=means[c_idx], std=stds[c_idx], epsilon=epsilons[c_idx], sl_scale_factor=sl_scale_factors[c_idx]
|
192 |
)
|
193 |
+
|
194 |
+
# Get colormap and normalization
|
195 |
+
vmax = np.quantile(target_map[channel_name].data, 0.995)
|
196 |
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
|
197 |
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
|
198 |
|
199 |
+
def to_pil(data, flip=False):
|
200 |
+
data_clipped = np.nan_to_num(data)
|
201 |
+
data_clipped = np.clip(data_clipped, 0, vmax)
|
202 |
+
data_norm = data_clipped / vmax if vmax > 0 else data_clipped
|
203 |
+
colored = (cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)
|
204 |
+
img = Image.fromarray(colored)
|
205 |
+
return img.transpose(Image.Transpose.FLIP_TOP_BOTTOM) if flip else img
|
206 |
+
|
207 |
+
return to_pil(last_input_map[channel_name].data), to_pil(pred_slice, flip=True), to_pil(target_map[channel_name].data)
|
208 |
+
|
209 |
+
|
210 |
+
# --- 4. Gradio UI and Controllers ---
|
211 |
+
def forecast_controller(dt_str, progress=gr.Progress(track_tqdm=True)):
|
212 |
+
try:
|
213 |
+
if not dt_str:
|
214 |
+
raise gr.Error("Please select a date and time.")
|
215 |
+
|
216 |
+
progress(0, desc="Initializing...")
|
217 |
+
setup_and_load_model(progress)
|
218 |
+
|
219 |
+
target_dt = datetime.datetime.fromisoformat(dt_str)
|
220 |
+
logger.info(f"Starting forecast for target time: {target_dt}")
|
221 |
+
|
222 |
+
input_tensor, last_input_map, target_map = fetch_and_process_sdo_data(target_dt, progress)
|
223 |
+
|
224 |
+
prediction_tensor = run_inference(input_tensor)
|
225 |
+
|
226 |
+
# Default visualization for aia171
|
227 |
+
img_in, img_pred, img_target = generate_visualization(last_input_map, prediction_tensor, target_map, "aia171")
|
228 |
+
|
229 |
+
status = f"Forecast complete for {target_dt.isoformat()}. Ready to explore channels."
|
230 |
+
logger.info(status)
|
231 |
+
|
232 |
+
return (last_input_map, prediction_tensor, target_map, # state
|
233 |
+
img_in, img_pred, img_target, status, gr.update(visible=True))
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
logger.error(f"An error occurred: {e}", exc_info=True)
|
237 |
+
raise gr.Error(f"Failed to generate forecast. Error: {e}")
|
238 |
+
|
239 |
+
def update_visualization_controller(last_input_map, prediction_tensor, target_map, channel_name):
|
240 |
+
if last_input_map is None:
|
241 |
+
return None, None, None
|
242 |
+
return generate_visualization(last_input_map, prediction_tensor, target_map, channel_name)
|
243 |
|
|
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
246 |
+
# State objects to hold the data after a forecast is run
|
247 |
+
state_last_input = gr.State()
|
248 |
+
state_prediction = gr.State()
|
249 |
+
state_target = gr.State()
|
250 |
|
251 |
gr.Markdown(
|
252 |
"""
|
253 |
<div align='center'>
|
254 |
+
# ☀️ Surya: Live Forecast Demo ☀️
|
255 |
+
### Generate a real forecast for any recent date using NASA's Heliophysics Model.
|
256 |
+
**Instructions:**
|
257 |
+
1. Pick a date and time (at least 1 hour in the past).
|
258 |
+
2. Click 'Generate Forecast'. **This will be slow (5-15 minutes) as it downloads live data.**
|
259 |
+
3. Once complete, select different channels to explore the multi-spectrum forecast.
|
260 |
</div>
|
261 |
"""
|
262 |
)
|
263 |
|
264 |
with gr.Row():
|
265 |
+
datetime_input = gr.Textbox(label="Enter Forecast Start Time (YYYY-MM-DD HH:MM:SS)",
|
266 |
+
value=(datetime.datetime.now() - datetime.timedelta(hours=2)).strftime("%Y-%m-%d %H:%M:%S"))
|
267 |
+
run_button = gr.Button("🔮 Generate Forecast", variant="primary")
|
268 |
+
|
269 |
+
with gr.Group(visible=False) as results_group:
|
270 |
+
status_box = gr.Textbox(label="Status", interactive=False)
|
271 |
+
channel_selector = gr.Dropdown(choices=SDO_CHANNELS, value="aia171", label="🛰️ Select SDO Channel")
|
272 |
+
with gr.Row():
|
273 |
+
input_display = gr.Image(label="Last Input to Model", height=512, width=512, interactive=False)
|
274 |
+
prediction_display = gr.Image(label="Surya's Forecast", height=512, width=512, interactive=False)
|
275 |
+
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
|
|
|
|
|
|
|
276 |
|
|
|
277 |
run_button.click(
|
278 |
fn=forecast_controller,
|
279 |
+
inputs=[datetime_input],
|
280 |
+
outputs=[state_last_input, state_prediction, state_target,
|
281 |
+
input_display, prediction_display, target_display, status_box, results_group]
|
282 |
)
|
283 |
|
|
|
284 |
channel_selector.change(
|
285 |
fn=update_visualization_controller,
|
286 |
+
inputs=[state_last_input, state_prediction, state_target, channel_selector],
|
287 |
+
outputs=[input_display, prediction_display, target_display]
|
|
|
|
|
|
|
|
|
|
|
288 |
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
# Create cache directory if it doesn't exist
|
292 |
+
os.makedirs("./data/sdo_cache", exist_ok=True)
|
293 |
demo.launch(debug=True)
|