Spaces:
Runtime error
Runtime error
File size: 2,372 Bytes
87fccdd 3ee1061 87fccdd f04e79d 3c7b0d4 b16d387 87fccdd b16d387 36cb68f 87fccdd 3ee1061 87fccdd 3ee1061 87fccdd 3ee1061 87fccdd 3ee1061 87fccdd 3ee1061 87fccdd 3ee1061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import wikipedia
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import re
import gradio as gr
# Initialize NLP model for understanding and generating text
model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
#nlp = pipeline("question-answering")
#summarizer = pipeline("summarization")
nlp = pipeline(model=model)
#summarizer = pipeline(model=model)
def fetch_and_summarize(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
content = soup.get_text()
summary = nlp(content[:10000]) # Limit content to avoid overwhelming the model
print(summary)
print(summary[0])
return summary[0]['summary']
def check_and_update_wikipedia(title, new_content):
try:
# Check if the page exists
page = wikipedia.page(title)
# Here, you would compare new_content with existing content
# and decide if an update is necessary. For simplicity, we'll just return feedback.
return f"Content for {title} exists. Comparison:\n{new_content[:100]}..."
except wikipedia.exceptions.PageError:
# If the page doesn't exist, you could create it, but here we'll just inform
return f"No page exists for {title}. New content could be:\n{new_content[:100]}..."
except wikipedia.exceptions.DisambiguationError as e:
# If there's ambiguity, handle it (for simplicity, we just return feedback)
return f"Disambiguation needed for {title}. Options: {e.options}"
def wiki_contributor(topic):
# Fetch and summarize content from an external source (e.g., arxiv.org)
external_content = fetch_and_summarize(f"https://arxiv.org/search/?query={topic}&searchtype=all")
# Generate or refine the content with NLP. Here's a placeholder for actual NLP operations:
enhanced_content = f"Enhanced content on {topic}: {external_content}"
# Check if Wikipedia needs updating or if we're creating a new entry
feedback = check_and_update_wikipedia(topic, enhanced_content)
return feedback
# Gradio Interface
iface = gr.Interface(
fn=wiki_contributor,
inputs=gr.Textbox(lines=1, placeholder="Enter topic here..."),
outputs="text",
title="AI Wikipedia Contributor",
description="Enter a topic to get feedback on how an AI could contribute to Wikipedia.",
)
# Launch the interface
iface.launch() |