wiki_contrib / app.py
broadfield-dev's picture
Create app.py
87fccdd verified
raw
history blame
1.87 kB
import wikipedia
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import re
# Initialize NLP model for understanding and generating text
nlp = pipeline("question-answering")
summarizer = pipeline("summarization")
def fetch_and_summarize(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
content = soup.get_text()
summary = summarizer(content[:10000]) # Limit content to avoid overwhelming the model
return summary[0]['summary']
def check_and_update_wikipedia(title, new_content):
try:
# Check if the page exists
page = wikipedia.page(title)
# Here, you would compare new_content with existing content
# and decide if an update is necessary. For simplicity, we'll just print.
print(f"Content for {title} exists. Comparing:\n{new_content[:100]}...")
except wikipedia.exceptions.PageError:
# If the page doesn't exist, create it
wikipedia.create(title, new_content)
print(f"Created new page for {title}.")
except wikipedia.exceptions.DisambiguationError as e:
# If there's ambiguity, handle it (for simplicity, we just print)
print(f"Disambiguation needed: {e.options}")
def main():
# Example topic to contribute to
topic = "Quantum Entanglement"
# Fetch and summarize content from an external source (e.g., arxiv.org)
external_content = fetch_and_summarize(f"https://arxiv.org/search/?query={topic}&searchtype=all")
# Generate or refine the content with NLP. Here's a placeholder for actual NLP operations:
enhanced_content = f"Enhanced content on {topic}: {external_content}"
# Check if Wikipedia needs updating or if we're creating a new entry
check_and_update_wikipedia(topic, enhanced_content)
if __name__ == "__main__":
main()