Spaces:
Runtime error
Runtime error
import wikipedia | |
from transformers import pipeline | |
import requests | |
from bs4 import BeautifulSoup | |
import re | |
# Initialize NLP model for understanding and generating text | |
nlp = pipeline("question-answering") | |
summarizer = pipeline("summarization") | |
def fetch_and_summarize(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
content = soup.get_text() | |
summary = summarizer(content[:10000]) # Limit content to avoid overwhelming the model | |
return summary[0]['summary'] | |
def check_and_update_wikipedia(title, new_content): | |
try: | |
# Check if the page exists | |
page = wikipedia.page(title) | |
# Here, you would compare new_content with existing content | |
# and decide if an update is necessary. For simplicity, we'll just print. | |
print(f"Content for {title} exists. Comparing:\n{new_content[:100]}...") | |
except wikipedia.exceptions.PageError: | |
# If the page doesn't exist, create it | |
wikipedia.create(title, new_content) | |
print(f"Created new page for {title}.") | |
except wikipedia.exceptions.DisambiguationError as e: | |
# If there's ambiguity, handle it (for simplicity, we just print) | |
print(f"Disambiguation needed: {e.options}") | |
def main(): | |
# Example topic to contribute to | |
topic = "Quantum Entanglement" | |
# Fetch and summarize content from an external source (e.g., arxiv.org) | |
external_content = fetch_and_summarize(f"https://arxiv.org/search/?query={topic}&searchtype=all") | |
# Generate or refine the content with NLP. Here's a placeholder for actual NLP operations: | |
enhanced_content = f"Enhanced content on {topic}: {external_content}" | |
# Check if Wikipedia needs updating or if we're creating a new entry | |
check_and_update_wikipedia(topic, enhanced_content) | |
if __name__ == "__main__": | |
main() |