chat-voice / app.py
broadfield's picture
Update app.py
8052ea6 verified
raw
history blame
2.26 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
import prompts
from pypipertts import PyPiper
pp=PyPiper()
pp.load_mod(instr="en_US-joe-medium")
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
print (bot_response)
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt,history,max_new_tokens,seed):
#seed = random.randint(1,9999999999999)
print(seed)
system_prompt = prompts.AI_REPORT_WRITER
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_new_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if response.token.text == "\n":
yield from pp.stream_tts(output)
output=""
output += response.token.text
#yield output
with gr.Blocks() as iface:
gr.HTML("""""")
aud=gr.Audio(streaming=True,autoplay=True)
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
chatbot=gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
sumbox=gr.Textbox("Summary", max_lines=100)
with gr.Column():
sum_out_box=gr.JSON(label="Summaries")
hist_out_box=gr.JSON(label="History")
#sub_b = submit_b.click(generate, [msg,chatbot],[msg,chatbot,sumbox,sum_out_box,hist_out_box])
#sub_e = msg.submit(generate, [msg, chatbot], [msg, chatbot,sumbox,sum_out_box,hist_out_box])
sub_b = submit_b.click(generate, [msg,chatbot],aud)
sub_e = msg.submit(generate, [msg, chatbot], aud)
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.queue(default_concurrency_limit=10).launch()