File size: 12,128 Bytes
601fcdb
 
 
 
 
5f3a1bb
601fcdb
 
 
5f3a1bb
 
 
 
601fcdb
 
5f3a1bb
 
 
 
601fcdb
 
 
5f3a1bb
 
601fcdb
5f3a1bb
 
601fcdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from PIL import Image, ImageDraw
import pandas as pd
import io
import csv
import os
from pathlib import Path

if os.environ.get('TESSDATA_PREFIX') is None and os.name == 'nt':
    tessdata_prefix = 'C:/Program Files/Tesseract-OCR/tessdata/'
    if Path(tessdata_prefix).exists():
        os.environ['TESSDATA_PREFIX'] = 'C:/Program Files/Tesseract-OCR/tessdata/'
    else:
        tessdata_prefix = None
if os.environ.get('TESSDATA_PREFIX') is None and os.name != 'nt':
    tessdata_prefix = '/usr/share/tesseract-ocr/4.00/tessdata'
    if Path(tessdata_prefix).exists():
        os.environ['TESSDATA_PREFIX'] = '/usr/share/tesseract-ocr/4.00/tessdata'
    else:
        tessdata_prefix = None
    
import pytesseract
if os.name == 'nt':
    if Path(r'c:/Program Files/Tesseract-OCR/tesseract.exe').exists():
        pytesseract.pytesseract.tesseract_cmd = r'c:/Program Files/Tesseract-OCR/tesseract.exe'
else:
    if Path(r'/usr/bin/tesseract').exists():
        pytesseract.pytesseract.tesseract_cmd =r'/usr/bin/tesseract'

def recognize_text(image_path, tesseract_config='--psm 6 -l spa'):
    """
    Performs OCR on an image and returns a DataFrame with character bounding boxes
    and associated information.

    Args:
        image_path: Path to the image file.
        tesseract_config: Configuration string for pytesseract (e.g., '--psm 6 -l spa').

    Returns:
        pandas.DataFrame: DataFrame containing character-level data (df_word_chars).
    """
    # if os.environ['TESSDATA_PREFIX'] is not None:
    #     tesseract_config =  f'--tessdata-dir "{tessdata_prefix}"' + tesseract_config
    image = Image.open(image_path).convert('RGB')
    if hasattr(image_path,'name'):
        im_name = image_path.name
    else:
        im_name = image_path
    image_height = image.height

    # Extract filename for trial_id
    trial_id = os.path.splitext(os.path.basename(im_name))[0]

    # Use pytesseract to extract data for words and characters
    data_words = pytesseract.image_to_data(image, config=tesseract_config)
    data_chars = pytesseract.image_to_boxes(image, config=tesseract_config)

    df_words = pd.read_csv(io.StringIO(data_words), sep='\t', quoting=csv.QUOTE_NONE)
    df_chars = pd.read_csv(io.StringIO(data_chars), sep=' ', header=None, names=['char', 'left', 'top', 'right', 'bottom', 'unknown'])

    # Fix character coordinates
    for index, row in df_chars.iterrows():
        original_top = int(row['top'])
        original_bottom = int(row['bottom'])
        df_chars.at[index, 'top'] = image_height - original_bottom
        df_chars.at[index, 'bottom'] = image_height - original_top

    # Create DataFrame to store spaces
    df_spaces = pd.DataFrame(columns=['level', 'page_num', 'block_num', 'par_num', 'line_num', 'word_num', 'left', 'top', 'width', 'height', 'conf', 'text'])

    # Group words by line, block, and paragraph
    grouped_lines = df_words.groupby(['block_num', 'par_num', 'line_num'])

    for (block_num, par_num, line_num), line_words_df in grouped_lines:
        sorted_words = line_words_df.sort_values(by='left')
        previous_word = None
        for index, current_word in sorted_words.iterrows():
            if previous_word is not None:
                space_left = int(previous_word['left']) + int(previous_word['width'])
                space_width = int(current_word['left']) - space_left
                if space_width > 0:
                    space_top = int(previous_word['top'])
                    space_height = int(previous_word['height'])
                    space_data = {
                        'level': 5,
                        'page_num': int(current_word['page_num']),
                        'block_num': int(current_word['block_num']),
                        'par_num': int(current_word['par_num']),
                        'line_num': int(current_word['line_num']),
                        'word_num': int(previous_word['word_num']),
                        'left': space_left,
                        'top': space_top,
                        'width': space_width,
                        'height': space_height,
                        'conf': 0,
                        'text': ' '
                    }
                    df_spaces = pd.concat([df_spaces, pd.DataFrame(space_data, index=[0])], ignore_index=True)
            previous_word = current_word

    # Create DataFrame for characters within words (and spaces)
    df_word_chars = pd.DataFrame(columns=['char', 'char_xmin', 'char_ymin', 'char_xmax', 'char_ymax',
                                            'block', 'paragraph', 'line_number',
                                            'word_nr', 'letter_nr', 'word',
                                            'char_x_center', 'char_y_center', 'assigned_line', 'trial_id'])


    for index_word, row_word in df_words.iterrows():
        if isinstance(row_word['text'], str) and row_word['text'].strip() and row_word['level'] == 5:
            word_left = int(row_word['left'])
            word_top = int(row_word['top'])
            word_width = int(row_word['width'])
            word_height = int(row_word['height'])
            word_right = word_left + word_width
            word_bottom = word_top + word_height
            word_text = row_word['text']

            char_index_in_word = 0
            relevant_chars = df_chars[
                (df_chars['left'] >= word_left) & (df_chars['right'] <= word_right) &
                (df_chars['top'] >= word_top) & (df_chars['bottom'] <= word_bottom)
            ]
            relevant_chars = relevant_chars.sort_values(by='left')
            previous_char_right = word_left

            for index_char, row_char in relevant_chars.iterrows():
                char_text = row_char['char']
                char_left = previous_char_right
                char_right = int(row_char['right'])
                char_right = min(char_right, word_right)
                if char_left > char_right:
                    char_right = int(row_char['right'])
                char_top = word_top
                char_bottom = word_bottom

                char_data = {
                    'char': char_text,
                    'char_xmin': int(round(char_left)),  # Round and convert to int
                    'char_ymin': int(round(char_top)),   # Round and convert to int
                    'char_xmax': int(round(char_right)),  # Round and convert to int
                    'char_ymax': int(round(char_bottom)), # Round and convert to int
                    'block': int(row_word['block_num']),
                    'paragraph': int(row_word['par_num']),
                    'line_number': int(row_word['line_num']),
                    'word_nr': int(row_word['word_num']),
                    'letter_nr': int(char_index_in_word), #already an int
                    'word': word_text,
                    'char_x_center': int(round((char_left + char_right) / 2)),  # Round and convert
                    'char_y_center': int(round((char_top + char_bottom) / 2)),  # Round and convert
                    'assigned_line': None,
                    'trial_id': trial_id
                }
                df_word_chars = pd.concat([df_word_chars, pd.DataFrame(char_data, index=[0])], ignore_index=True)
                char_index_in_word += 1
                previous_char_right = char_right

            spaces_following_word = df_spaces[
                (df_spaces['word_num'] == int(row_word['word_num'])) &
                (df_spaces['line_num'] == int(row_word['line_num'])) &
                (df_spaces['block_num'] == int(row_word['block_num'])) &
                (df_spaces['par_num'] == int(row_word['par_num']))
            ]

            for index_space, row_space in spaces_following_word.iterrows():
                space_data = {
                    'char': ' ',
                    'char_xmin': int(round(row_space['left'])),    # Round and convert
                    'char_ymin': int(round(row_space['top'])),     # Round and convert
                    'char_xmax': int(round(row_space['left'] + row_space['width'])),  # Round and convert
                    'char_ymax': int(round(row_space['top'] + row_space['height'])), # Round and convert
                    'block': int(row_space['block_num']),
                    'paragraph': int(row_space['par_num']),
                    'line_number': int(row_space['line_num']),
                    'word_nr': int(row_space['word_num']),
                    'letter_nr': int(char_index_in_word),  # Already int
                    'word': word_text,
                    'char_x_center': int(round((row_space['left'] + row_space['left'] + row_space['width']) / 2)), # Round
                    'char_y_center': int(round((row_space['top'] + row_space['top'] + row_space['height']) / 2)), # Round
                    'assigned_line': None,
                    'trial_id': trial_id
                }
                df_word_chars = pd.concat([df_word_chars, pd.DataFrame(space_data, index=[0])], ignore_index=True)
                char_index_in_word += 1

    # Create 'assigned_line' column
    df_word_chars['assigned_line'] = 0
    line_counter = 1
    for block_num in sorted(df_word_chars['block'].unique()):
        for par_num in sorted(df_word_chars.loc[df_word_chars['block'] == block_num, 'paragraph'].unique()):
            for line_num in sorted(df_word_chars.loc[(df_word_chars['block'] == block_num) & (df_word_chars['paragraph'] == par_num), 'line_number'].unique()):
                line_mask = (df_word_chars['line_number'] == line_num) & (df_word_chars['paragraph'] == par_num) & (df_word_chars['block'] == block_num)
                df_word_chars.loc[line_mask, 'assigned_line'] = line_counter
                line_counter += 1

    # Adjust Y_Start, Y_End, and char_y_center, converting to integers
    for assigned_line in df_word_chars['assigned_line'].unique():
        line_mask = (df_word_chars['assigned_line'] == assigned_line)
        min_top = df_word_chars.loc[line_mask, 'char_ymin'].min()
        max_bottom = df_word_chars.loc[line_mask, 'char_ymax'].max()
        new_y_center = (min_top + max_bottom) / 2
        df_word_chars.loc[line_mask, 'char_ymin'] = int(round(min_top))      # Round and convert
        df_word_chars.loc[line_mask, 'char_ymax'] = int(round(max_bottom))     # Round and convert
        df_word_chars.loc[line_mask, 'char_y_center'] = int(round(new_y_center)) # Round and convert

    # Convert relevant columns to integers
    int_columns = ['char_xmin', 'char_ymin', 'char_xmax', 'char_ymax', 'block', 'paragraph',
                    'line_number', 'word_nr', 'letter_nr', 'char_x_center', 'char_y_center', 'assigned_line']
    for col in int_columns:
        df_word_chars[col] = df_word_chars[col].astype(int)

    return df_word_chars


def draw_char_boxes(image_path, df_word_chars, output_path='output_boxes_combined.png'):
    """
    Draws bounding boxes around characters on the image.

    Args:
        image_path: Path to the image file.
        df_word_chars: DataFrame containing character bounding box data.
        output_path: Path to save the image with bounding boxes.  Defaults to 'output_boxes_combined.png'.
    """
    image = Image.open(image_path).convert('RGB')
    draw = ImageDraw.Draw(image)

    # Draw bounding boxes for characters (purple)
    for index, row in df_word_chars.iterrows():
        left = int(row['char_xmin'])
        top = int(row['char_ymin'])
        right = int(row['char_xmax'])
        bottom = int(row['char_ymax'])
        draw.rectangle([(left, top), (right, bottom)], outline='purple', width=1)

    # Display or save the image
    image.save(output_path)


# Example usage
if __name__ == '__main__':
    # image_path = 'testfiles/testim_ocr.png'
    image_path = 'testfiles/newplot.png'
    # Example with default tesseract config
    df_chars = recognize_text(image_path)
    draw_char_boxes(image_path, df_chars)
    df_chars.to_csv('testim_ocr_df_word_chars_test.csv', index=False)
    print("\nDataFrame of Characters within Words (df_word_chars) - Default Config:")
    print(df_chars)