custom server we go... soon (#3)
Browse files- custom server we go... soon (f9a9db52e528a51f33d30ce35074ef4e4bfa1aca)
app.py
CHANGED
|
@@ -46,7 +46,7 @@ log_queue = collections.deque(maxlen=1000) # Store last 1000 log messages
|
|
| 46 |
gradio_handler = GradioLogHandler(log_queue)
|
| 47 |
|
| 48 |
# Set root logger level to DEBUG to capture all messages from agents
|
| 49 |
-
logging.getLogger().setLevel(logging.
|
| 50 |
logging.getLogger().addHandler(gradio_handler)
|
| 51 |
# --- End Gradio Log Handler ---
|
| 52 |
|
|
@@ -110,14 +110,14 @@ def register_model_with_metadata(model_id, model, preprocess, postprocess, class
|
|
| 110 |
MODEL_REGISTRY[model_id] = entry
|
| 111 |
|
| 112 |
# Load and register models (copied from app_mcp.py)
|
| 113 |
-
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
| 114 |
-
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
|
| 115 |
-
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
| 116 |
-
register_model_with_metadata(
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
)
|
| 121 |
|
| 122 |
# --- ONNX Quantized Model Example ---
|
| 123 |
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
|
@@ -714,7 +714,6 @@ with gr.Blocks() as app:
|
|
| 714 |
demo.render()
|
| 715 |
footer.render()
|
| 716 |
|
| 717 |
-
app.
|
| 718 |
|
| 719 |
-
|
| 720 |
-
app.launch(mcp_server=True)
|
|
|
|
| 46 |
gradio_handler = GradioLogHandler(log_queue)
|
| 47 |
|
| 48 |
# Set root logger level to DEBUG to capture all messages from agents
|
| 49 |
+
logging.getLogger().setLevel(logging.INFO)
|
| 50 |
logging.getLogger().addHandler(gradio_handler)
|
| 51 |
# --- End Gradio Log Handler ---
|
| 52 |
|
|
|
|
| 110 |
MODEL_REGISTRY[model_id] = entry
|
| 111 |
|
| 112 |
# Load and register models (copied from app_mcp.py)
|
| 113 |
+
# image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
| 114 |
+
# model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
|
| 115 |
+
# clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
| 116 |
+
# register_model_with_metadata(
|
| 117 |
+
# "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
|
| 118 |
+
# display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
|
| 119 |
+
# architecture="SwinV2", dataset="TBA"
|
| 120 |
+
# )
|
| 121 |
|
| 122 |
# --- ONNX Quantized Model Example ---
|
| 123 |
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
|
|
|
| 714 |
demo.render()
|
| 715 |
footer.render()
|
| 716 |
|
| 717 |
+
app.unload(demo)
|
| 718 |
|
| 719 |
+
app.queue(max_size=10, default_concurrency_limit=2).launch(mcp_server=True)
|
|
|