bunnyroshan commited on
Commit
4f23172
·
verified ·
1 Parent(s): 3a19efd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ from PIL import Image
4
+ import gradio as gr
5
+
6
+ # Load the YOLO model
7
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # Ensure 'best.pt' is the path to your trained model
8
+
9
+ # Define a function to process the image and make predictions
10
+ def detect_objects(image):
11
+ # Preprocess the image
12
+ transform = transforms.Compose([
13
+ transforms.ToTensor()
14
+ ])
15
+ image = transform(image).unsqueeze(0) # Add batch dimension
16
+
17
+ # Perform inference
18
+ results = model(image)
19
+
20
+ # Extract bounding boxes and labels
21
+ bbox_img = results.render()[0] # This gets the image with bounding boxes drawn
22
+
23
+ return Image.fromarray(bbox_img)
24
+
25
+ # Create the Gradio interface
26
+ inputs = gr.inputs.Image(shape=(640, 480))
27
+ outputs = gr.outputs.Image(type="pil")
28
+
29
+ gr_interface = gr.Interface(fn=detect_objects, inputs=inputs, outputs=outputs, title="YOLO Object Detection", description="Upload an image to detect objects using a YOLO model.")
30
+
31
+ # Run the Gradio app
32
+ if __name__ == "__main__":
33
+ gr_interface.launch()