Spaces:
Running
Running
File size: 14,234 Bytes
ad3cdb0 b4e4961 ad3cdb0 b4e4961 ad3cdb0 b4e4961 ad3cdb0 1b97239 49997c9 1b97239 49997c9 1b97239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
---
title: Callytics Demo
emoji: π
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 5.23.1
app_file: app.py
pinned: false
license: gpl-3.0
short_description: Callytics Demo
---
<div align="center">
<img src=".docs/img/CallyticsIcon.png" alt="CallyticsLogo" width="200">




[](https://linkedin.com/in/bunyaminergen)
# Callytics
`Callytics` is an advanced call analytics solution that leverages speech recognition and large language models (LLMs)
technologies to analyze phone conversations from customer service and call centers. By processing both the
audio and text of each call, it provides insights such as sentiment analysis, topic detection, conflict detection,
profanity word detection and summary. These cutting-edge techniques help businesses optimize customer interactions,
identify areas for improvement, and enhance overall service quality.
When an audio file is placed in the `.data/input` directory, the entire pipeline automatically starts running, and the
resulting data is inserted into the database.
**Note**: _This is only a `v1.1.0` version; many new features will be added, models
will be fine-tuned or trained from scratch, and various optimization efforts will be applied. For more information,
you can check out the [Upcoming](#upcoming) section._
**Note**: _If you would like to contribute to this repository,
please read the [CONTRIBUTING](.docs/documentation/CONTRIBUTING.md) first._
</div>
---
### Table of Contents
- [Prerequisites](#prerequisites)
- [Architecture](#architecture)
- [Math And Algorithm](#math-and-algorithm)
- [Features](#features)
- [Demo](#demo)
- [Installation](#installation)
- [File Structure](#file-structure)
- [Database Structure](#database-structure)
- [Datasets](#datasets)
- [Version Control System](#version-control-system)
- [Upcoming](#upcoming)
- [Documentations](#documentations)
- [License](#licence)
- [Links](#links)
- [Team](#team)
- [Contact](#contact)
- [Citation](#citation)
---
### Prerequisites
##### General
- `Python 3.11` _(or above)_
##### Llama
- `GPU (min 24GB)` _(or above)_
- `Hugging Face Credentials (Account, Token)`
- `Llama-3.2-11B-Vision-Instruct` _(or above)_
##### OpenAI
- `GPU (min 12GB)` _(for other process such as `faster whisper` & `NeMo`)_
- At least one of the following is required:
- `OpenAI Credentials (Account, API Key)`
- `Azure OpenAI Credentials (Account, API Key, API Base URL)`
---
### Architecture

---
### Math and Algorithm
This section describes the mathematical models and algorithms used in the project.
_**Note**: The mathematical concepts and algorithms specific to this repository, rather than the models used, will be
provided in this section. Please refer to the `RESOURCES` under the [Documentations](#documentations) section for the
repositories and models utilized or referenced._
##### Silence Duration Calculation
The silence durations are derived from the time intervals between speech segments:
$$S = \{s_1, s_2, \ldots, s_n\}$$
represent _the set of silence durations (in seconds)_ between consecutive speech segments.
- **A user-defined factor**:
$$\text{factor} \in \mathbb{R}^{+}$$
To determine a threshold that distinguishes _significant_ silence from trivial gaps, two statistical methods can be
applied:
**1. Standard Deviation-Based Threshold**
- _Mean_:
$$\mu = \frac{1}{n}\sum_{i=1}^{n}s_i$$
- _Standard Deviation_:
$$
\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(s_i - \mu)^2}
$$
- _Threshold_:
$$
T_{\text{std}} = \sigma \cdot \text{factor}
$$
**2. Median + Interquartile Range (IQR) Threshold**
- _Median_:
_Let:_
$$ S = \{s_{(1)} \leq s_{(2)} \leq \cdots \leq s_{(n)}\} $$
be an ordered set.
_Then:_
$$
M = \text{median}(S) =
\begin{cases}
s_{\frac{n+1}{2}}, & \text{if } n \text{ is odd}, \\\\[6pt]
\frac{s_{\frac{n}{2}} + s_{\frac{n}{2}+1}}{2}, & \text{if } n \text{ is even}.
\end{cases}
$$
- _Quartiles:_
$$
Q_1 = s_{(\lfloor 0.25n \rfloor)}, \quad Q_3 = s_{(\lfloor 0.75n \rfloor)}
$$
- _IQR_:
$$
\text{IQR} = Q_3 - Q_1
$$
- **Threshold:**
$$
T_{\text{median\\_iqr}} = M + (\text{IQR} \times \text{factor})
$$
**Total Silence Above Threshold**
Once the threshold
$$T$$
either
$$T_{\text{std}}$$
or
$$T_{\text{median\\_iqr}}$$
is defined, we sum only those silence durations that meet or exceed this threshold:
$$
\text{TotalSilence} = \sum_{i=1}^{n} s_i \cdot \mathbf{1}(s_i \geq T)
$$
where $$\mathbf{1}(s_i \geq T)$$ is an indicator function defined as:
$$
\mathbf{1}(s_i \geq T) =
\begin{cases}
1 & \text{if } s_i \geq T \\
0 & \text{otherwise}
\end{cases}
$$
**Summary:**
- **Identify the silence durations:**
$$
S = \{s_1, s_2, \ldots, s_n\}
$$
- **Determine the threshold using either:**
_Standard deviation-based:_
$$
T = \sigma \cdot \text{factor}
$$
_Median+IQR-based:_
$$
T = M + (\text{IQR} \cdot \text{factor})
$$
- **Compute the total silence above this threshold:**
$$
\text{TotalSilence} = \sum_{i=1}^{n} s_i \cdot \mathbf{1}(s_i \geq T)
$$
---
### Features
- [x] Speech Enhancement
- [x] Sentiment Analysis
- [x] Profanity Word Detection
- [x] Summary
- [x] Conflict Detection
- [x] Topic Detection
---
### Demo

---
### Installation
##### Linux/Ubuntu
```bash
sudo apt update -y && sudo apt upgrade -y
```
```bash
sudo apt install ffmpeg -y
```
```bash
sudo apt install -y ffmpeg build-essential g++
```
```bash
git clone https://github.com/bunyaminergen/Callytics
```
```bash
cd Callytics
```
```bash
conda env create -f environment.yaml
```
```bash
conda activate Callytics
```
##### Environment
`.env` file sample:
```Text
# CREDENTIALS
# OPENAI
OPENAI_API_KEY=
# HUGGINGFACE
HUGGINGFACE_TOKEN=
# AZURE OPENAI
AZURE_OPENAI_API_KEY=
AZURE_OPENAI_API_BASE=
AZURE_OPENAI_API_VERSION=
# DATABASE
DB_NAME=
DB_USER=
DB_PASSWORD=
DB_HOST=
DB_PORT=
DB_URL=
```
---
##### Database
_In this section, an `example database` and `tables` are provided. It is a `well-structured` and `simple design`. If you
create the tables
and columns in the same structure in your remote database, you will not encounter errors in the code. However, if you
want to change the database structure, you will also need to refactor the code._
*Note*: __Refer to the [Database Structure](#database-structure) section for the database schema and tables.__
```bash
sqlite3 .db/Callytics.sqlite < src/db/sql/Schema.sql
```
##### Grafana
_In this section, it is explained how to install `Grafana` on your `local` environment. Since Grafana is a third-party
open-source monitoring application, you must handle its installation yourself and connect your database. Of course, you
can also use it with `Granafa Cloud` instead of `local` environment._
```bash
sudo apt update -y && sudo apt upgrade -y
```
```bash
sudo apt install -y apt-transport-https software-properties-common wget
```
```bash
wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key add -
```
```bash
echo "deb https://packages.grafana.com/oss/deb stable main" | sudo tee /etc/apt/sources.list.d/grafana.list
```
```bash
sudo apt install -y grafana
```
```bash
sudo systemctl start grafana-server
sudo systemctl enable grafana-server
sudo systemctl daemon-reload
```
```bash
http://localhost:3000
```
**SQLite Plugin**
```bash
sudo grafana-cli plugins install frser-sqlite-datasource
```
```bash
sudo systemctl restart grafana-server
```
```bash
sudo systemctl daemon-reload
```
### File Structure
```Text
.
βββ automation
β βββ service
β βββ callytics.service
βββ config
β βββ config.yaml
β βββ nemo
β β βββ diar_infer_telephonic.yaml
β βββ prompt.yaml
βββ .data
β βββ example
β β βββ LogisticsCallCenterConversation.mp3
β βββ input
βββ .db
β βββ Callytics.sqlite
βββ .docs
β βββ documentation
β β βββ CONTRIBUTING.md
β β βββ RESOURCES.md
β βββ img
β βββ Callytics.drawio
β βββ Callytics.gif
β βββ CallyticsIcon.png
β βββ Callytics.png
β βββ Callytics.svg
β βββ database.png
βββ .env
βββ environment.yaml
βββ .gitattributes
βββ .github
β βββ CODEOWNERS
βββ .gitignore
βββ LICENSE
βββ main.py
βββ README.md
βββ requirements.txt
βββ src
βββ audio
β βββ alignment.py
β βββ analysis.py
β βββ effect.py
β βββ error.py
β βββ io.py
β βββ metrics.py
β βββ preprocessing.py
β βββ processing.py
β βββ utils.py
βββ db
β βββ manager.py
β βββ sql
β βββ AudioPropertiesInsert.sql
β βββ Schema.sql
β βββ TopicFetch.sql
β βββ TopicInsert.sql
β βββ UtteranceInsert.sql
βββ text
β βββ llm.py
β βββ model.py
β βββ prompt.py
β βββ utils.py
βββ utils
βββ utils.py
19 directories, 43 files
```
---
### Database Structure

---
### Datasets
- [Callytics Speaker Verification Dataset *(CSVD)*](.data/groundtruth/speakerverification/DatasetCard.md)
---
### Version Control System
##### Releases
- [v1.0.0](https://github.com/bunyaminergen/Callytics/archive/refs/tags/v1.0.0.zip) _.zip_
- [v1.0.0](https://github.com/bunyaminergen/Callytics/archive/refs/tags/v1.0.0.tar.gz) _.tar.gz_
- [v1.1.0](https://github.com/bunyaminergen/Callytics/archive/refs/tags/v1.1.0.zip) _.zip_
- [v1.1.0](https://github.com/bunyaminergen/Callytics/archive/refs/tags/v1.1.0.tar.gz) _.tar.gz_
##### Branches
- [main](https://github.com/bunyaminergen/Callytics/tree/main)
- [develop](https://github.com/bunyaminergen/Callytics/tree/develop)
---
### Upcoming
- [ ] **Speech Emotion Recognition:** Develop a model to automatically detect emotions from speech data.
- [ ] **New Forced Alignment Model:** Train a forced alignment model from scratch.
- [ ] **New Vocal Separation Model:** Train a vocal separation model from scratch.
- [ ] **Unit Tests:** Add a comprehensive unit testing script to validate functionality.
- [ ] **Logging Logic:** Implement a more comprehensive and structured logging mechanism.
- [ ] **Warnings:** Add meaningful and detailed warning messages for better user guidance.
- [ ] **Real-Time Analysis:** Enable real-time analysis capabilities within the system.
- [ ] **Dockerization:** Containerize the repository to ensure seamless deployment and environment consistency.
- [ ] **New Transcription Models:** Integrate and test new transcription models
suchas [AIOLAβs Multi-Head Speech Recognition Model](https://venturebeat.com/ai/aiola-drops-ultra-fast-multi-head-speech-recognition-model-beats-openai-whisper/).
- [ ] **Noise Reduction Model:** Identify, test, and integrate a deep learning-based noise reduction model. Consider
existing models like **Facebook Research Denoiser**, **Noise2Noise**, **Audio Denoiser CNN**. Write test scripts for
evaluation, and if necessary, train a new model for optimal performance.
##### Considerations
- [ ] Detect CSR's identity via Voice Recognition/Identification instead of Diarization and LLM.
- [ ] Transform the code structure into a pipeline for better modularity and scalability.
- [ ] Publish the repository as a Python package on **PyPI** for wider distribution.
- [ ] Convert the repository into a Linux package to support Linux-based systems.
- [ ] Implement a two-step processing workflow: perform **diarization** (speaker segmentation) first, then apply *
*transcription** for each identified speaker separately. This approach can improve transcription accuracy by
leveraging speaker separation.
- [ ] Enable **parallel processing** for tasks such as diarization, transcription, and model inference to improve
overall system performance and reduce processing time.
- [ ] Explore using **Docker Compose** for multi-container orchestration if required.
- [ ] Upload the models and relevant resources to **Hugging Face** for easier access, sharing, and community
collaboration.
- [ ] Consider writing a **Command Line Interface (CLI)** to simplify user interaction and improve usability.
- [ ] Test the ability to use **different language models (LLMs)** for specific tasks. For instance, using **BERT** for
profanity detection. Evaluate their performance and suitability for different use cases as a feature.
---
### Documentations
- [RESOURCES](.docs/documentation/RESOURCES.md)
- [CONTRIBUTING](.docs/documentation/CONTRIBUTING.md)
- [PRESENTATION](.docs/presentation/CallyticsPresentationEN.pdf)
---
### Licence
- [LICENSE](LICENSE)
---
### Links
- [Github](https://github.com/bunyaminergen/Callytics)
- [Website](https://bunyaminergen.com)
- [Linkedin](https://www.linkedin.com/in/bunyaminergen)
---
### Team
- [Bunyamin Ergen](https://www.linkedin.com/in/bunyaminergen)
---
### Contact
- [Mail](mailto:[email protected])
---
### Citation
```bibtex
@software{ Callytics,
author = {Bunyamin Ergen},
title = {{Callytics}},
year = {2024},
month = {12},
url = {https://github.com/bunyaminergen/Callytics},
version = {v1.1.0},
}
```
---
|