Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import gradio as gr | |
| import streamlit as st | |
| from huggingface_hub import HfApi, login | |
| from dotenv import load_dotenv | |
| from llm import get_groq_llm | |
| from vectorstore import get_chroma_vectorstore | |
| from embeddings import get_SFR_Code_embedding_model | |
| from kadiApy_ragchain import KadiApyRagchain | |
| # Load environment variables from .env file | |
| load_dotenv() | |
| vectorstore_path = "data/vectorstore" | |
| GROQ_API_KEY = os.environ["GROQ_API_KEY"] | |
| HF_TOKEN = os.environ["HF_Token"] | |
| with open("config.json", "r") as file: | |
| config = json.load(file) | |
| login(HF_TOKEN) | |
| hf_api = HfApi() | |
| # Access the values | |
| LLM_MODEL_NAME = config["llm_model_name"] | |
| LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"]) | |
| def initialize(): | |
| global kadiAPY_ragchain | |
| vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) | |
| llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) | |
| kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore) | |
| initialize() | |
| def bot_kadi(history): | |
| user_query = history[-1][0] | |
| response = kadiAPY_ragchain.process_query(user_query) | |
| history[-1] = (user_query, response) | |
| yield history | |
| import gradio as gr | |
| def add_text_to_chatbot(chat_history, user_input): | |
| if user_input: | |
| chat_history.append((user_input, None)) | |
| response = "This is a placeholder response. Replace this with your AI logic." | |
| chat_history.append((None, response)) | |
| return chat_history, "" | |
| def main(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## KadiAPY - AI Coding-Assistant") | |
| gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") | |
| with gr.Tab("KadiAPY - AI Assistant"): | |
| with gr.Row(): | |
| with gr.Column(scale=10): | |
| chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) | |
| user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| clear_btn = gr.Button("Clear", variant="stop") | |
| gr.Examples( | |
| examples=[ | |
| "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", | |
| "I need a method to upload a file to a record. The id of the record is 3", | |
| ], | |
| inputs=user_txt, | |
| outputs=chatbot, | |
| fn=add_text_to_chatbot, | |
| label="Try asking...", | |
| cache_examples=False, | |
| examples_per_page=3, | |
| ) | |
| submit_btn.click(add_text_to_chatbot, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot][chatbot]) | |
| clear_btn.click(lambda: ([], ""), None, [chatbot, user_txt]) | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() |