from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("simbolo-ai/Myanmarsar-GPT") model = AutoModelForCausalLM.from_pretrained("simbolo-ai/Myanmarsar-GPT") # Move model to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Input text input_text = "Marketing" input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device) # Generate output output = model.generate( input_ids, max_length=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95 ) # Decode and print print(tokenizer.decode(output[0], skip_special_tokens=True))