Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,109 +22,164 @@ def respond(
|
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
seed,
|
| 25 |
-
|
| 26 |
custom_model
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
-
This function handles the chatbot response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
| 31 |
-
selected_model = custom_model if custom_model.strip() != "" else model_selection
|
| 32 |
-
print(f"Selected model: {selected_model}")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
if seed == -1:
|
| 35 |
seed = None
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
| 38 |
for val in history:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
if
|
| 42 |
-
messages.append({"role": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
messages.append({"role": "user", "content": message})
|
| 44 |
|
|
|
|
| 45 |
response = ""
|
|
|
|
|
|
|
|
|
|
| 46 |
for message_chunk in client.chat.completions.create(
|
| 47 |
-
model=
|
| 48 |
max_tokens=max_tokens,
|
| 49 |
-
stream=True,
|
| 50 |
temperature=temperature,
|
| 51 |
top_p=top_p,
|
| 52 |
frequency_penalty=frequency_penalty,
|
| 53 |
seed=seed,
|
| 54 |
messages=messages,
|
| 55 |
):
|
|
|
|
| 56 |
token_text = message_chunk.choices[0].delta.content
|
|
|
|
| 57 |
response += token_text
|
| 58 |
yield response
|
| 59 |
|
|
|
|
|
|
|
| 60 |
# Create a Chatbot component with a specified height
|
| 61 |
chatbot = gr.Chatbot(height=600)
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
"meta-llama/Llama-3.3-70B-Instruct",
|
| 66 |
-
"
|
| 67 |
-
"
|
| 68 |
-
"facebook/bart-base",
|
| 69 |
-
"google/flan-t5-base"
|
| 70 |
]
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# Create the Gradio ChatInterface
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
with gr.Tab("Information"):
|
| 109 |
with gr.Accordion("Featured Models", open=False):
|
| 110 |
-
gr.
|
| 111 |
"""
|
|
|
|
| 112 |
<table style="width:100%; text-align:center; margin:auto;">
|
| 113 |
<tr>
|
| 114 |
<th>Model Name</th>
|
| 115 |
-
<th>
|
|
|
|
| 116 |
</tr>
|
| 117 |
<tr>
|
| 118 |
-
<td>
|
| 119 |
-
<td>
|
|
|
|
| 120 |
</tr>
|
| 121 |
<tr>
|
| 122 |
-
<td>
|
| 123 |
-
<td>
|
|
|
|
| 124 |
</tr>
|
| 125 |
<tr>
|
| 126 |
-
<td>
|
| 127 |
-
<td>
|
|
|
|
| 128 |
</tr>
|
| 129 |
</table>
|
| 130 |
"""
|
|
@@ -132,43 +187,23 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 132 |
with gr.Accordion("Parameters Overview", open=False):
|
| 133 |
gr.Markdown(
|
| 134 |
"""
|
| 135 |
-
##
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
## Max New Tokens
|
| 139 |
-
###### Determines the maximum length of the response.
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
"""
|
| 153 |
)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
respond,
|
| 158 |
-
additional_inputs=[
|
| 159 |
-
system_message,
|
| 160 |
-
max_tokens,
|
| 161 |
-
temperature,
|
| 162 |
-
top_p,
|
| 163 |
-
frequency_penalty,
|
| 164 |
-
seed,
|
| 165 |
-
model,
|
| 166 |
-
custom_model
|
| 167 |
-
],
|
| 168 |
-
chatbot=chatbot,
|
| 169 |
-
theme="Nymbo/Nymbo_Theme"
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
if __name__ == "__main__":
|
| 173 |
-
print("Launching the demo application.")
|
| 174 |
-
demo.launch()
|
|
|
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
seed,
|
| 25 |
+
model,
|
| 26 |
custom_model
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
+
This function handles the chatbot response. It takes in:
|
| 30 |
+
- message: the user's new message
|
| 31 |
+
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
| 32 |
+
- system_message: the system prompt
|
| 33 |
+
- max_tokens: the maximum number of tokens to generate in the response
|
| 34 |
+
- temperature: sampling temperature
|
| 35 |
+
- top_p: top-p (nucleus) sampling
|
| 36 |
+
- frequency_penalty: penalize repeated tokens in the output
|
| 37 |
+
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 38 |
+
- model: the selected model
|
| 39 |
+
- custom_model: a custom model provided by the user
|
| 40 |
"""
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
print(f"Received message: {message}")
|
| 43 |
+
print(f"History: {history}")
|
| 44 |
+
print(f"System message: {system_message}")
|
| 45 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 46 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 47 |
+
print(f"Model: {model}, Custom Model: {custom_model}")
|
| 48 |
+
|
| 49 |
+
# Convert seed to None if -1 (meaning random)
|
| 50 |
if seed == -1:
|
| 51 |
seed = None
|
| 52 |
|
| 53 |
+
# Use custom model if provided, otherwise use selected model
|
| 54 |
+
if custom_model.strip() != "":
|
| 55 |
+
model_to_use = custom_model.strip()
|
| 56 |
+
else:
|
| 57 |
+
model_to_use = model
|
| 58 |
+
|
| 59 |
+
# Construct the messages array required by the API
|
| 60 |
messages = [{"role": "system", "content": system_message}]
|
| 61 |
+
|
| 62 |
+
# Add conversation history to the context
|
| 63 |
for val in history:
|
| 64 |
+
user_part = val[0]
|
| 65 |
+
assistant_part = val[1]
|
| 66 |
+
if user_part:
|
| 67 |
+
messages.append({"role": "user", "content": user_part})
|
| 68 |
+
print(f"Added user message to context: {user_part}")
|
| 69 |
+
if assistant_part:
|
| 70 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
| 71 |
+
print(f"Added assistant message to context: {assistant_part}")
|
| 72 |
+
|
| 73 |
+
# Append the latest user message
|
| 74 |
messages.append({"role": "user", "content": message})
|
| 75 |
|
| 76 |
+
# Start with an empty string to build the response as tokens stream in
|
| 77 |
response = ""
|
| 78 |
+
print("Sending request to OpenAI API.")
|
| 79 |
+
|
| 80 |
+
# Make the streaming request to the HF Inference API via openai-like client
|
| 81 |
for message_chunk in client.chat.completions.create(
|
| 82 |
+
model=model_to_use, # Use the selected or custom model
|
| 83 |
max_tokens=max_tokens,
|
| 84 |
+
stream=True, # Stream the response
|
| 85 |
temperature=temperature,
|
| 86 |
top_p=top_p,
|
| 87 |
frequency_penalty=frequency_penalty,
|
| 88 |
seed=seed,
|
| 89 |
messages=messages,
|
| 90 |
):
|
| 91 |
+
# Extract the token text from the response chunk
|
| 92 |
token_text = message_chunk.choices[0].delta.content
|
| 93 |
+
print(f"Received token: {token_text}")
|
| 94 |
response += token_text
|
| 95 |
yield response
|
| 96 |
|
| 97 |
+
print("Completed response generation.")
|
| 98 |
+
|
| 99 |
# Create a Chatbot component with a specified height
|
| 100 |
chatbot = gr.Chatbot(height=600)
|
| 101 |
+
print("Chatbot interface created.")
|
| 102 |
|
| 103 |
+
# List of placeholder models for demonstration
|
| 104 |
+
models_list = [
|
| 105 |
"meta-llama/Llama-3.3-70B-Instruct",
|
| 106 |
+
"meta-llama/Llama-2-70B-chat",
|
| 107 |
+
"google/flan-t5-xl"
|
|
|
|
|
|
|
| 108 |
]
|
| 109 |
|
| 110 |
+
# Function to filter models based on search input
|
| 111 |
+
def filter_models(search_term):
|
| 112 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
| 113 |
+
return gr.update(choices=filtered_models)
|
| 114 |
+
|
| 115 |
# Create the Gradio ChatInterface
|
| 116 |
+
# Adding additional fields for model selection and parameters
|
| 117 |
+
demo = gr.ChatInterface(
|
| 118 |
+
respond,
|
| 119 |
+
additional_inputs=[
|
| 120 |
+
gr.Textbox(value="", label="System message"),
|
| 121 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
| 122 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 123 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
| 124 |
+
gr.Slider(
|
| 125 |
+
minimum=-2.0,
|
| 126 |
+
maximum=2.0,
|
| 127 |
+
value=0.0,
|
| 128 |
+
step=0.1,
|
| 129 |
+
label="Frequency Penalty"
|
| 130 |
+
),
|
| 131 |
+
gr.Slider(
|
| 132 |
+
minimum=-1,
|
| 133 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
| 134 |
+
value=-1,
|
| 135 |
+
step=1,
|
| 136 |
+
label="Seed (-1 for random)"
|
| 137 |
+
),
|
| 138 |
+
gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"),
|
| 139 |
+
gr.Accordion("Featured Models", open=True).update(
|
| 140 |
+
gr.Column([
|
| 141 |
+
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change(
|
| 142 |
+
filter_models, inputs="__self__", outputs="model"
|
| 143 |
+
),
|
| 144 |
+
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")
|
| 145 |
+
])
|
| 146 |
+
)
|
| 147 |
+
],
|
| 148 |
+
fill_height=True,
|
| 149 |
+
chatbot=chatbot,
|
| 150 |
+
theme="Nymbo/Nymbo_Theme",
|
| 151 |
+
)
|
| 152 |
|
| 153 |
+
# Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview"
|
| 154 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
|
| 155 |
+
with gr.Tab("Chat"):
|
| 156 |
+
gr.Markdown("## Chat with the Model")
|
| 157 |
+
chatbot.render()
|
| 158 |
with gr.Tab("Information"):
|
| 159 |
with gr.Accordion("Featured Models", open=False):
|
| 160 |
+
gr.HTML(
|
| 161 |
"""
|
| 162 |
+
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
|
| 163 |
<table style="width:100%; text-align:center; margin:auto;">
|
| 164 |
<tr>
|
| 165 |
<th>Model Name</th>
|
| 166 |
+
<th>Type</th>
|
| 167 |
+
<th>Notes</th>
|
| 168 |
</tr>
|
| 169 |
<tr>
|
| 170 |
+
<td>Llama-3.3-70B-Instruct</td>
|
| 171 |
+
<td>Instruction</td>
|
| 172 |
+
<td>High performance</td>
|
| 173 |
</tr>
|
| 174 |
<tr>
|
| 175 |
+
<td>Llama-2-70B-chat</td>
|
| 176 |
+
<td>Chat</td>
|
| 177 |
+
<td>Conversational</td>
|
| 178 |
</tr>
|
| 179 |
<tr>
|
| 180 |
+
<td>Flan-T5-XL</td>
|
| 181 |
+
<td>General</td>
|
| 182 |
+
<td>Versatile</td>
|
| 183 |
</tr>
|
| 184 |
</table>
|
| 185 |
"""
|
|
|
|
| 187 |
with gr.Accordion("Parameters Overview", open=False):
|
| 188 |
gr.Markdown(
|
| 189 |
"""
|
| 190 |
+
## Parameters Overview
|
| 191 |
+
### Max new tokens
|
| 192 |
+
This slider controls the maximum number of tokens to generate in the response.
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
### Temperature
|
| 195 |
+
Sampling temperature, which controls the randomness. A higher temperature makes the output more random.
|
| 196 |
|
| 197 |
+
### Top-P
|
| 198 |
+
Top-p (nucleus) sampling, which controls the diversity. The model considers the smallest number of tokens whose cumulative probability exceeds the top-p threshold.
|
| 199 |
|
| 200 |
+
### Frequency Penalty
|
| 201 |
+
Penalizes repeated tokens in the output, which helps to reduce repetition.
|
| 202 |
|
| 203 |
+
### Seed
|
| 204 |
+
A fixed seed for reproducibility. Set to -1 for random seed.
|
| 205 |
"""
|
| 206 |
)
|
| 207 |
|
| 208 |
+
print("Launching the demo application.")
|
| 209 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|