|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
|
|
|
|
models_list = [ |
|
"PlaceholderModel1", |
|
"PlaceholderModel2", |
|
"PlaceholderModel3", |
|
"PlaceholderModel4", |
|
"PlaceholderModel5" |
|
] |
|
|
|
def filter_featured_models(search_term): |
|
""" |
|
Filters the 'models_list' based on text entered in the search box. |
|
Returns a gr.update object that changes the choices available |
|
in the 'featured_models_radio'. |
|
""" |
|
filtered = [m for m in models_list if search_term.lower() in m.lower()] |
|
return gr.update(choices=filtered) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model, |
|
selected_model |
|
): |
|
""" |
|
This function handles the chatbot response. It takes in: |
|
- message: the user's new message |
|
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) |
|
- system_message: the system prompt |
|
- max_tokens: the maximum number of tokens to generate in the response |
|
- temperature: sampling temperature |
|
- top_p: top-p (nucleus) sampling |
|
- frequency_penalty: penalize repeated tokens in the output |
|
- seed: a fixed seed for reproducibility; -1 will mean 'random' |
|
- custom_model: a custom Hugging Face model name (if any) |
|
- selected_model: a model name chosen from the featured models radio button |
|
""" |
|
|
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Custom model: {custom_model}") |
|
print(f"Selected featured model: {selected_model}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
|
|
|
|
|
|
if custom_model.strip() != "": |
|
model_to_use = custom_model.strip() |
|
elif selected_model is not None and selected_model.strip() != "": |
|
model_to_use = selected_model.strip() |
|
else: |
|
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" |
|
|
|
print(f"Model selected for inference: {model_to_use}") |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model_to_use, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
|
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
|
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: |
|
gr.Markdown("## Serverless Text Generation Hub") |
|
gr.Markdown( |
|
"An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API." |
|
) |
|
|
|
|
|
chatbot = gr.Chatbot(height=600, label="Chat Preview") |
|
|
|
|
|
system_message_box = gr.Textbox( |
|
value="", |
|
label="System Message", |
|
placeholder="Enter a system prompt if you want (optional).", |
|
) |
|
|
|
|
|
max_tokens_slider = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max new tokens", |
|
) |
|
|
|
|
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
) |
|
|
|
|
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P", |
|
) |
|
|
|
|
|
freq_penalty_slider = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty", |
|
) |
|
|
|
|
|
seed_slider = gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)", |
|
) |
|
|
|
|
|
custom_model_box = gr.Textbox( |
|
value="", |
|
label="Custom Model", |
|
info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty." |
|
) |
|
|
|
|
|
with gr.Accordion("Featured Models", open=False): |
|
|
|
model_search_box = gr.Textbox( |
|
label="Filter Models", |
|
placeholder="Search for a featured model...", |
|
lines=1, |
|
) |
|
|
|
featured_models_radio = gr.Radio( |
|
label="Select a featured model below", |
|
choices=models_list, |
|
value=None, |
|
interactive=True |
|
) |
|
|
|
|
|
model_search_box.change( |
|
filter_featured_models, |
|
inputs=model_search_box, |
|
outputs=featured_models_radio |
|
) |
|
|
|
|
|
|
|
interface = gr.ChatInterface( |
|
fn=respond, |
|
chatbot=chatbot, |
|
additional_inputs=[ |
|
system_message_box, |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
freq_penalty_slider, |
|
seed_slider, |
|
custom_model_box, |
|
featured_models_radio |
|
], |
|
theme="Nymbo/Nymbo_Theme", |
|
title="Serverless TextGen Hub with Featured Models", |
|
description=( |
|
"Use the sliders and textboxes to control generation parameters. " |
|
"Pick a model from 'Featured Models' or specify a custom model path." |
|
), |
|
|
|
fill_height=True |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application...") |
|
demo.launch() |